Changes

MyWikiBiz, Author Your Legacy — Wednesday November 20, 2024
Jump to navigationJump to search
Line 2,526: Line 2,526:  
* Raskin, Marcus G., and Bernstein, Herbert J. (1987, eds.), ''New Ways of Knowing : The Sciences, Society, and Reconstructive Knowledge'', Rowman and Littlefield, Totowa, NJ.
 
* Raskin, Marcus G., and Bernstein, Herbert J. (1987, eds.), ''New Ways of Knowing : The Sciences, Society, and Reconstructive Knowledge'', Rowman and Littlefield, Totowa, NJ.
   −
==Notes Found in a Cactus Patch==
     −
: '''''Note.'''  This is a collection of fragments from previous discussions that I plan to use in documenting the cactus graph syntax for propositional logic.''
  −
  −
===Cactus Language===
  −
  −
Table 13 illustrates the ''existential interpretation'' of cactus graphs and cactus expressions by providing English translations for a few of the most basic and commonly occurring forms.
  −
  −
Even though I do most of my thinking in the existential interpretation, I will continue to speak of these forms as ''logical graphs'', because I think it is an important fact about them that the formal validity of the axioms and theorems is not dependent on the choice between the entitative and the existential interpretations.
  −
  −
The first extension is the ''reflective extension of logical graphs'' (RefLog).  It is obtained by generalizing the negation operator "<math>\texttt{(~)}</math>" in a certain way, calling "<math>\texttt{(~)}</math>" the ''controlled'', ''moderated'', or ''reflective'' negation operator of order 1, then adding another such operator for each finite <math>k = 2, 3, \ldots .</math>
  −
  −
In sum, these operators are symbolized by bracketed argument lists as follows:  "<math>\texttt{(~)}</math>", "<math>\texttt{(~,~)}</math>", "<math>\texttt{(~,~,~)}</math>", &hellip;, where the number of slots is the order of the reflective negation operator in question.
  −
             
  −
The cactus graph and the cactus expression shown here are both described as a ''spike''.
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
o---------------------------------------o
  −
|                                      |
  −
|                  o                  |
  −
|                  |                  |
  −
|                  @                  |
  −
|                                      |
  −
o---------------------------------------o
  −
|                  ( )                  |
  −
o---------------------------------------o
  −
</pre>
  −
|}
  −
  −
The rule of reduction for a lobe is:
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
o---------------------------------------o
  −
|                                      |
  −
|  x_1  x_2  ...  x_k                |
  −
|  o-----o--- ... ---o                |
  −
|    \              /                  |
  −
|    \            /                  |
  −
|      \          /                    |
  −
|      \        /                    |
  −
|        \      /                      |
  −
|        \    /                      |
  −
|          \  /                        |
  −
|          \ /                        |
  −
|            @      =      @            |
  −
|                                      |
  −
o---------------------------------------o
  −
</pre>
  −
|}
  −
  −
if and only if exactly one of the <math>x_j\!</math> is a spike.
  −
  −
In Ref Log, an expression of the form <math>\texttt{((}~ e_1 ~\texttt{),(}~ e_2 ~\texttt{),(}~ \ldots ~\texttt{),(}~ e_k ~\texttt{))}</math>
  −
expresses the fact that ''exactly one of the <math>e_j\!</math> is true''.  Expressions of this form are called ''universal partition'' expressions, and
  −
they parse into a type of graph called a ''painted and rooted cactus'' (PARC):
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
o---------------------------------------o
  −
|                                      |
  −
|  e_1  e_2  ...  e_k                |
  −
|  o    o          o                |
  −
|  |    |          |                |
  −
|  o-----o--- ... ---o                |
  −
|    \              /                  |
  −
|    \            /                  |
  −
|      \          /                    |
  −
|      \        /                    |
  −
|        \      /                      |
  −
|        \    /                      |
  −
|          \  /                        |
  −
|          \ /                        |
  −
|            @                          |
  −
|                                      |
  −
o---------------------------------------o
  −
</pre>
  −
|}
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
o---------------------------------------o
  −
|                                      |
  −
| ( x1, x2, ..., xk )  =  [blank]      |
  −
|                                      |
  −
| iff                                  |
  −
|                                      |
  −
| Just one of the arguments            |
  −
| x1, x2, ..., xk  =  ()                |
  −
|                                      |
  −
o---------------------------------------o
  −
</pre>
  −
|}
  −
  −
The interpretation of these operators, read as assertions about the values of their listed arguments, is as follows:
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| Existential Interpretation:
  −
| Just one of the k argument is false.
  −
|-
  −
| Entitative  Interpretation:
  −
| Not just one of the k arguments is true.
  −
|}
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
o-------------------o-------------------o-------------------o
  −
|      Graph      |      String      |    Translation    |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        @        |        " "        |      true.      |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |        ( )        |      untrue.      |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        r        |                  |                  |
  −
|        @        |        r        |        r.        |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        r        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |        (r)        |      not r.      |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      r s t      |                  |                  |
  −
|        @        |      r s t      |  r and s and t.  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      r s t      |                  |                  |
  −
|      o o o      |                  |                  |
  −
|        \|/        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |    ((r)(s)(t))    |    r or s or t.  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |    r implies s.  |
  −
|        r  s    |                  |                  |
  −
|        o---o    |                  |    if r then s.  |
  −
|        |        |                  |                  |
  −
|        @        |      (r (s))      |    no r sans s.  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      r  s      |                  |                  |
  −
|      o---o      |                  | r exclusive-or s. |
  −
|        \ /        |                  |                  |
  −
|        @        |      (r , s)      | r not equal to s. |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      r  s      |                  |                  |
  −
|      o---o      |                  |                  |
  −
|        \ /        |                  |                  |
  −
|        o        |                  | r if & only if s. |
  −
|        |        |                  |                  |
  −
|        @        |    ((r , s))    | r equates with s. |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      r  s  t      |                  |                  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |  just one false  |
  −
|        @        |    (r , s , t)    |  out of r, s, t.  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      r  s  t      |                  |                  |
  −
|      o  o  o      |                  |                  |
  −
|      |  |  |      |                  |                  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |  just one true  |
  −
|        @        |  ((r),(s),(t))  |  among r, s, t.  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |  genus t over    |
  −
|        r  s      |                  |  species r, s.  |
  −
|        o  o      |                  |                  |
  −
|      t  |  |      |                  |  partition t    |
  −
|      o--o--o      |                  |  among r & s.    |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |  whole pie t:    |
  −
|        @        |  ( t ,(r),(s))  |  slices r, s.    |
  −
o-------------------o-------------------o-------------------o
  −
</pre>
  −
|}
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
Table 13.  The Existential Interpretation
  −
o-------------------o-------------------o-------------------o
  −
|  Cactus Graph    | Cactus Expression |    Existential    |
  −
|                  |                  |  Interpretation  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        @        |        " "        |      true.      |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |        ( )        |      untrue.      |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        a        |                  |                  |
  −
|        @        |        a        |        a.        |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        a        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |        (a)        |      not a.      |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a b c      |                  |                  |
  −
|        @        |      a b c      |  a and b and c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a b c      |                  |                  |
  −
|      o o o      |                  |                  |
  −
|        \|/        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |    ((a)(b)(c))    |    a or b or c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|                  |                  |    a implies b.  |
  −
|        a  b    |                  |                  |
  −
|        o---o    |                  |    if a then b.  |
  −
|        |        |                  |                  |
  −
|        @        |      (a (b))      |    no a sans b.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b      |                  |                  |
  −
|      o---o      |                  | a exclusive-or b. |
  −
|        \ /        |                  |                  |
  −
|        @        |      (a , b)      | a not equal to b. |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b      |                  |                  |
  −
|      o---o      |                  |                  |
  −
|        \ /        |                  |                  |
  −
|        o        |                  | a if & only if b. |
  −
|        |        |                  |                  |
  −
|        @        |    ((a , b))    | a equates with b. |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b  c      |                  |                  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |  just one false  |
  −
|        @        |    (a , b , c)    |  out of a, b, c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b  c      |                  |                  |
  −
|      o  o  o      |                  |                  |
  −
|      |  |  |      |                  |                  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |  just one true  |
  −
|        @        |  ((a),(b),(c))  |  among a, b, c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|                  |                  |  genus a over    |
  −
|        b  c      |                  |  species b, c.  |
  −
|        o  o      |                  |                  |
  −
|      a  |  |      |                  |  partition a    |
  −
|      o--o--o      |                  |  among b & c.    |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |  whole pie a:    |
  −
|        @        |  ( a ,(b),(c))  |  slices b, c.    |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
</pre>
  −
|}
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
Table 14.  The Entitative Interpretation
  −
o-------------------o-------------------o-------------------o
  −
|  Cactus Graph    | Cactus Expression |    Entitative    |
  −
|                  |                  |  Interpretation  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        @        |        " "        |      untrue.      |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |        ( )        |      true.      |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        a        |                  |                  |
  −
|        @        |        a        |        a.        |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|        a        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |        (a)        |      not a.      |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a b c      |                  |                  |
  −
|        @        |      a b c      |    a or b or c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a b c      |                  |                  |
  −
|      o o o      |                  |                  |
  −
|        \|/        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |                  |
  −
|        @        |    ((a)(b)(c))    |  a and b and c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|                  |                  |    a implies b.  |
  −
|                  |                  |                  |
  −
|        o a      |                  |    if a then b.  |
  −
|        |        |                  |                  |
  −
|        @ b      |      (a) b        |    not a, or b.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b      |                  |                  |
  −
|      o---o      |                  | a if & only if b. |
  −
|        \ /        |                  |                  |
  −
|        @        |      (a , b)      | a equates with b. |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b      |                  |                  |
  −
|      o---o      |                  |                  |
  −
|        \ /        |                  |                  |
  −
|        o        |                  | a exclusive-or b. |
  −
|        |        |                  |                  |
  −
|        @        |    ((a , b))    | a not equal to b. |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b  c      |                  |                  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  | not just one true |
  −
|        @        |    (a , b , c)    | out of a, b, c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a  b  c      |                  |                  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |                  |
  −
|        \ /        |                  |                  |
  −
|        o        |                  |                  |
  −
|        |        |                  |  just one true  |
  −
|        @        |  ((a , b , c))  |  among a, b, c.  |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
|                  |                  |                  |
  −
|      a            |                  |                  |
  −
|      o            |                  |  genus a over    |
  −
|      |  b  c      |                  |  species b, c.  |
  −
|      o--o--o      |                  |                  |
  −
|      \  /      |                  |  partition a    |
  −
|        \ /        |                  |  among b & c.    |
  −
|        o        |                  |                  |
  −
|        |        |                  |  whole pie a:    |
  −
|        @        |  ( a ,(b),(c))  |  slices b, c.    |
  −
|                  |                  |                  |
  −
o-------------------o-------------------o-------------------o
  −
</pre>
  −
|}
  −
  −
{| align="center" cellpadding="6" width="90%"
  −
| align="center" |
  −
<pre>
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|      Graph      |    String      |  Entitative    |  Existential  |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|        @        |      " "      |    untrue.    |      true.      |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|        o        |                |                |                |
  −
|        |        |                |                |                |
  −
|        @        |      ( )      |      true.      |    untrue.    |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|        r        |                |                |                |
  −
|        @        |        r        |        r.      |        r.      |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|        r        |                |                |                |
  −
|        o        |                |                |                |
  −
|        |        |                |                |                |
  −
|        @        |      (r)      |      not r.    |      not r.    |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|      r s t      |                |                |                |
  −
|        @        |      r s t      |  r or s or t.  |  r and s and t. |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|      r s t      |                |                |                |
  −
|      o o o      |                |                |                |
  −
|      \|/      |                |                |                |
  −
|        o        |                |                |                |
  −
|        |        |                |                |                |
  −
|        @        |  ((r)(s)(t))  |  r and s and t. |  r or s or t.  |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |  r implies s.  |
  −
|                |                |                |                |
  −
|        o r      |                |                |  if r then s.  |
  −
|        |        |                |                |                |
  −
|        @ s      |      (r) s      |  not r, or s    |  no r sans s.  |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |  r implies s.  |
  −
|        r  s    |                |                |                |
  −
|        o---o    |                |                |  if r then s.  |
  −
|        |        |                |                |                |
  −
|        @        |    (r (s))    |                |  no r sans s.  |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|      r  s      |                |                |                |
  −
|      o---o      |                |                |r exclusive-or s.|
  −
|      \ /      |                |                |                |
  −
|        @        |    (r , s)    |                |r not equal to s.|
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|      r  s      |                |                |                |
  −
|      o---o      |                |                |                |
  −
|      \ /      |                |                |                |
  −
|        o        |                |                |r if & only if s.|
  −
|        |        |                |                |                |
  −
|        @        |    ((r , s))    |                |r equates with s.|
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|    r  s  t    |                |                |                |
  −
|    o--o--o    |                |                |                |
  −
|      \  /      |                |                |                |
  −
|      \ /      |                |                | just one false  |
  −
|        @        |  (r , s , t)  |                | out of r, s, t. |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |                |
  −
|    r  s  t    |                |                |                |
  −
|    o  o  o    |                |                |                |
  −
|    |  |  |    |                |                |                |
  −
|    o--o--o    |                |                |                |
  −
|      \  /      |                |                |                |
  −
|      \ /      |                |                |  just one true  |
  −
|        @        |  ((r),(s),(t))  |                |  among r, s, t. |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
|                |                |                |  genus t over  |
  −
|        r  s    |                |                |  species r, s.  |
  −
|        o  o    |                |                |                |
  −
|    t  |  |    |                |                |  partition t    |
  −
|    o--o--o    |                |                |  among r & s.  |
  −
|      \  /      |                |                |                |
  −
|      \ /      |                |                |  whole pie t:  |
  −
|        @        |  ( t ,(r),(s))  |                |  slices r, s.  |
  −
o-----------------o-----------------o-----------------o-----------------o
  −
</pre>
  −
|}
  −
  −
===Zeroth Order Logic===
  −
  −
<pre>
  −
Here is a scaled-down version of one of my very first applications,
  −
having to do with the demographic variables in a survey data base.
  −
  −
This Example illustrates the use of 2-variate logical forms
  −
for expressing and reasoning about the logical constraints
  −
that are involved in the following types of situations:
  −
  −
1.  Distinction:    A =/= B
  −
    Also known as:  logical inequality, exclusive disjunction
  −
    Represented as:  ( A , B )
  −
    Graphed as:
  −
    |
  −
    |  A  B
  −
    |  o---o
  −
    |    \ /
  −
    |    @
  −
  −
2.  Equality:        A = B
  −
    Also known as:  logical equivalence, if and only if, A <=> B
  −
    Represented as:  (( A , B ))
  −
    Graphed as:
  −
    |
  −
    |  A  B
  −
    |  o---o
  −
    |    \ /
  −
    |    o
  −
    |    |
  −
    |    @
  −
  −
3.  Implication:    A => B
  −
    Also known as:  entailment, if-then
  −
    Represented as:  ( A ( B ))
  −
    Graphed as:
  −
    |
  −
    |  A  B
  −
    |  o---o
  −
    |  |
  −
    |  @
  −
  −
Example of a proposition expressing a "zeroth order theory" (ZOT):
  −
  −
Consider the following text, written in what I am calling "Ref Log",
  −
also known as the "Cactus Language" synpropositional logic:
  −
  −
|  ( male  , female )
  −
|  (( boy  , male child ))
  −
|  (( girl , female child ))
  −
|  ( child ( human ))
  −
  −
Graphed as:
  −
  −
|                  boy  male    girl  female
  −
|                    o---o child    o---o child
  −
|  male  female      \ /            \ /          child  human
  −
|    o---o            o              o              o---o
  −
|      \ /              |              |              |
  −
|      @              @              @              @|
  −
  −
Nota Bene.  Due to graphic constraints -- no, the other
  −
kind of graphic constraints -- of the immediate medium,
  −
I am forced to string out the logical conjuncts of the
  −
actual cactus graph for this situation, one that might
  −
sufficiently be reasoned out from the exhibit supra by
  −
fusing together the four roots of the severed cactus.
  −
  −
Either of these expressions, text or graph, is equivalent to
  −
what would otherwise be written in a more ordinary syntax as:
  −
  −
|  male  =/=  female
  −
|  boy  <=>  male child
  −
|  girl  <=>  female child
  −
|  child  =>  human
  −
  −
This is a actually a single proposition, a conjunction of four lines:
  −
one distinction, two equations, and one implication.  Together these
  −
amount to a set of definitions conjointly constraining the logical
  −
compatibility of the six feature names that appear.  They may be
  −
thought of as sculpting out a space of models that is some subset
  −
of the 2^6 = 64 possible interpretations, and thereby shaping some
  −
universe of discourse.
  −
  −
Once this backdrop is defined, it is possible to "query" this universe,
  −
simply by conjoining additional propositions in further constraint of
  −
the underlying set of models.  This has many uses, as we shall see.
  −
  −
We are considering an Example of a propositional expression
  −
that is formed on the following "alphabet" or "lexicon" of
  −
six "logical features" or "boolean variables":
  −
  −
$A$  =  {"boy", "child", "female", "girl", "human", "male"}.
  −
  −
The expression is this:
  −
  −
|  ( male  , female )
  −
|  (( boy  , male child ))
  −
|  (( girl , female child ))
  −
|  ( child ( human ))
  −
  −
Putting it very roughly -- and putting off a better description
  −
of it till later -- we may think of this expression as notation
  −
for a boolean function f : %B%^6 -> %B%.  This is what we might
  −
call the "abstract type" of the function, but we will also find
  −
it convenient on many occasions to represent the points of this
  −
particular copy of the space %B%^6 in terms of the positive and
  −
negative versions of the features from $A$ that serve to encase
  −
them as logical "cells", as they are called in the venn diagram
  −
picture of the corresponding universe of discourse X = [$A$].
  −
  −
Just for concreteness, this form of representation begins and ends:
  −
  −
<0,0,0,0,0,0>  =  (boy)(child)(female)(girl)(human)(male),
  −
<0,0,0,0,0,1>  =  (boy)(child)(female)(girl)(human) male ,
  −
<0,0,0,0,1,0>  =  (boy)(child)(female)(girl) human (male),
  −
<0,0,0,0,1,1>  =  (boy)(child)(female)(girl) human  male ,
  −
...
  −
<1,1,1,1,0,0>  =  boy  child  female  girl (human)(male),
  −
<1,1,1,1,0,1>  =  boy  child  female  girl (human) male ,
  −
<1,1,1,1,1,0>  =  boy  child  female  girl  human (male),
  −
<1,1,1,1,1,1>  =  boy  child  female  girl  human  male .
  −
  −
I continue with the previous Example, that I bring forward and sum up here:
  −
  −
|                  boy  male          girl  female
  −
|                    o---o child          o---o child
  −
|  male  female      \ /                  \ /              child  human
  −
|    o---o            o                    o                    o--o
  −
|      \ /            |                    |                    |
  −
|      @              @                    @                    @
  −
|
  −
| (male , female)((boy , male child))((girl , female child))(child (human))
  −
  −
For my master's piece in Quantitative Psychology (Michigan State, 1989),
  −
I wrote a program, "Theme One" (TO) by name, that among its other duties
  −
operates to process the expressions of the cactus language in many of the
  −
most pressing ways that we need in order to be able to use it effectively
  −
as a propositional calculus.  The operational component of TO where one
  −
does the work of this logical modeling is called "Study", and the core
  −
of the logical calculator deep in the heart of this Study section is
  −
a suite of computational functions that evolve a particular species
  −
of "normal form", analogous to a "disjunctive normal form" (DNF),
  −
from whatever expression they are prebendered as their input.
  −
  −
This "canonical", "normal", or "stable" form of logical expression --
  −
I'll refine the distinctions among these subforms all in good time --
  −
permits succinct depiction as an "arboreal boolean expansion" (ABE).
  −
  −
Once again, the graphic limitations of this space prevail against
  −
any disposition that I might have to lay out a really substantial
  −
case before you, of the brand that might have a chance to impress
  −
you with the aptitude of this ilk of ABE in rooting out the truth
  −
of many a complexly obscurely subtly adamant whetstone of our wit.
  −
  −
So let me just illustrate the way of it with one conjunct of our Example.
  −
What follows will be a sequence of expressions, each one after the first
  −
being logically equal to the one that precedes it:
  −
  −
Step 1
  −
  −
|    g    fc
  −
|    o---o
  −
|      \ /
  −
|      o
  −
|      |
  −
|      @
  −
  −
Step 2
  −
  −
|                  o
  −
|        fc        |  fc
  −
|    o---o        o---o
  −
|      \ /          \ /
  −
|      o            o
  −
|      |            |
  −
|    g o-------------o--o g
  −
|        \          /
  −
|        \        /
  −
|          \      /
  −
|          \    /
  −
|            \  /
  −
|            \ /
  −
|              @
  −
  −
Step 3
  −
  −
|      f c
  −
|      o
  −
|      |            f c
  −
|      o            o
  −
|      |            |
  −
|    g o-------------o--o g
  −
|        \          /
  −
|        \        /
  −
|          \      /
  −
|          \    /
  −
|            \  /
  −
|            \ /
  −
|              @
  −
  −
Step 4
  −
  −
|          o
  −
|          |
  −
|    c o  o c          o
  −
|      |  |            |
  −
|      o  o      c o  o c
  −
|      |  |        |  |
  −
|    f o---o--o f  f o---o--o f
  −
|        \ /          \ /
  −
|      g o-------------o--o g
  −
|          \          /
  −
|          \        /
  −
|            \      /
  −
|            \    /
  −
|              \  /
  −
|              \ /
  −
|                @
  −
  −
Step 5
  −
  −
|          o      c o
  −
|      c  |        |
  −
|    f o---o--o f  f o---o--o f
  −
|        \ /          \ /
  −
|      g o-------------o--o g
  −
|          \          /
  −
|          \        /
  −
|            \      /
  −
|            \    /
  −
|              \  /
  −
|              \ /
  −
|                @
  −
  −
Step 6
  −
  −
|                                      o
  −
|                                      |
  −
|          o                      o  o
  −
|          |                      |  |
  −
|    c o---o--o c      o        c o---o--o c
  −
|        \ /            |            \ /
  −
|      f o-------------o--o f      f o-------------o--o f
  −
|          \          /              \          /
  −
|          \        /                \        /
  −
|            \      /                  \      /
  −
|            \    /                    \    /
  −
|              \  /                      \  /
  −
|              \ /                        \ /
  −
|              g o---------------------------o--o g
  −
|                \                        /
  −
|                  \                      /
  −
|                  \                    /
  −
|                    \                  /
  −
|                    \                /
  −
|                      \              /
  −
|                      \            /
  −
|                        \          /
  −
|                        \        /
  −
|                          \      /
  −
|                          \    /
  −
|                            \  /
  −
|                            \ /
  −
|                              @
  −
  −
Step 7
  −
  −
|          o                      o
  −
|          |                      |
  −
|    c o---o--o c      o        c o---o--o c
  −
|        \ /            |            \ /
  −
|      f o-------------o--o f      f o-------------o--o f
  −
|          \          /              \          /
  −
|          \        /                \        /
  −
|            \      /                  \      /
  −
|            \    /                    \    /
  −
|              \  /                      \  /
  −
|              \ /                        \ /
  −
|              g o---------------------------o--o g
  −
|                \                        /
  −
|                  \                      /
  −
|                  \                    /
  −
|                    \                  /
  −
|                    \                /
  −
|                      \              /
  −
|                      \            /
  −
|                        \          /
  −
|                        \        /
  −
|                          \      /
  −
|                          \    /
  −
|                            \  /
  −
|                            \ /
  −
|                              @
  −
  −
This last expression is the ABE of the input expression.
  −
It can be transcribed into ordinary logical language as:
  −
  −
| either girl and
  −
|        either female and
  −
|              either child and true
  −
|              or not child and false
  −
|        or not female and false
  −
| or not girl and
  −
|        either female and
  −
|              either child and false
  −
|              or not child and true
  −
|        or not female and true
  −
  −
The expression "((girl , female child))" is sufficiently evaluated
  −
by considering its logical values on the coordinate tuples of %B%^3,
  −
or its indications on the cells of the associated venn diagram that
  −
depicts the universe of discourse, namely, on these eight arguments:
  −
     
  −
<1, 1, 1>  =  girl  female  child ,
  −
<1, 1, 0>  =  girl  female (child),
  −
<1, 0, 1>  =  girl (female) child ,
  −
<1, 0, 0>  =  girl (female)(child),
  −
<0, 1, 1>  =  (girl) female  child ,
  −
<0, 1, 0>  =  (girl) female (child),
  −
<0, 0, 1>  =  (girl)(female) child ,
  −
<0, 0, 0>  =  (girl)(female)(child).
  −
  −
The ABE output expression tells us the logical values of
  −
the input expression on each of these arguments, doing so
  −
by attaching the values to the leaves of a tree, and acting
  −
as an "efficient" or "lazy" evaluator in the sense that the
  −
process that generates the tree follows each path only up to
  −
the point in the tree where it can determine the values on the
  −
entire subtree beyond that point.  Thus, the ABE tree tells us:
  −
  −
girl  female  child  -> 1
  −
girl  female (child)  -> 0
  −
girl (female) -> 0
  −
(girl) female  child  -> 0
  −
(girl) female (child)  -> 1
  −
(girl)(female) -> 1
  −
  −
Picking out the interpretations that yield the truth of the expression,
  −
and expanding the corresponding partial argument tuples, we arrive at
  −
the following interpretations that satisfy the input expression:
  −
  −
girl  female  child  -> 1
  −
(girl) female (child)  -> 1
  −
(girl)(female) child  -> 1
  −
(girl)(female)(child)  -> 1
  −
  −
In sum, if it's a female and a child, then it's a girl,
  −
and if it's either not a female or not a child or both,
  −
then it's not a girl.
  −
  −
Brief Automata
  −
  −
By way of providing a simple illustration of Cook's Theorem,
  −
that "Propositional Satisfiability is NP-Complete", here is
  −
an exposition of one way to translate Turing Machine set-ups
  −
into propositional expressions, employing the Ref Log Syntax
  −
for Prop Calc that I described in a couple of earlier notes:
  −
  −
Notation:
  −
  −
Stilt(k)  =  Space and Time Limited Turing Machine,
  −
            with k units of space and k units of time.
  −
  −
Stunt(k)  =  Space and Time Limited Turing Machine,
  −
            for computing the parity of a bit string,
  −
            with Number of Tape cells of input equal to k.
  −
  −
I will follow the pattern of the discussion in the book of
  −
Herbert Wilf, 'Algorithms & Complexity' (1986), pages 188-201,
  −
but translate into Ref Log, which is more efficient with respect
  −
to the number of propositional clauses that are required.
  −
  −
Parity Machine
  −
  −
|                    1/1/+1
  −
|                  ------->
  −
|              /\ /        \ /\
  −
|      0/0/+1  ^  0          1  ^  0/0/+1
  −
|              \/|\        /|\/
  −
|                | <------- |
  −
|        #/#/-1  |  1/1/+1  |  #/#/-1
  −
|                |          |
  −
|                v          v
  −
|                #          *
  −
  −
o-------o--------o-------------o---------o------------o
  −
| State | Symbol | Next Symbol | Ratchet | Next State |
  −
|  Q  |  S    |    S'      |  dR    |    Q'    |
  −
o-------o--------o-------------o---------o------------o
  −
|  0  |  0    |    0      |  +1    |    0      |
  −
|  0  |  1    |    1      |  +1    |    1      |
  −
|  0  |  #    |    #      |  -1    |    #      |
  −
|  1  |  0    |    0      |  +1    |    1      |
  −
|  1  |  1    |    1      |  +1    |    0      |
  −
|  1  |  #    |    #      |  -1    |    *      |
  −
o-------o--------o-------------o---------o------------o
  −
  −
The TM has a "finite automaton" (FA) as its component.
  −
Let us refer to this particular FA by the name of "M".
  −
  −
The "tape-head" (that is, the "read-unit") will be called "H".
  −
The "registers" are also called "tape-cells" or "tape-squares".
  −
  −
In order to consider how the finitely "stilted" rendition of this TM
  −
can be translated into the form of a purely propositional description,
  −
one now fixes k and limits the discussion to talking about a Stilt(k),
  −
which is really not a true TM anymore but a finite automaton in disguise.
  −
  −
In this example, for the sake of a minimal illustration, we choose k = 2,
  −
and discuss Stunt(2).  Since the zeroth tape cell and the last tape cell
  −
are occupied with bof and eof marks "#", this amounts to only one digit
  −
of significant computation.
  −
  −
To translate Stunt(2) into propositional form we use
  −
the following collection of propositional variables:
  −
  −
For the "Present State Function" QF : P -> Q,
  −
  −
{p0_q#, p0_q*, p0_q0, p0_q1,
  −
p1_q#, p1_q*, p1_q0, p1_q1,
  −
p2_q#, p2_q*, p2_q0, p2_q1,
  −
p3_q#, p3_q*, p3_q0, p3_q1}
  −
  −
The propositional expression of the form "pi_qj" says:
  −
  −
| At the point-in-time p_i,
  −
| the finite machine M is in the state q_j.
  −
  −
For the "Present Register Function" RF : P -> R,
  −
  −
{p0_r0, p0_r1, p0_r2, p0_r3,
  −
p1_r0, p1_r1, p1_r2, p1_r3,
  −
p2_r0, p2_r1, p2_r2, p2_r3,
  −
p3_r0, p3_r1, p3_r2, p3_r3}
  −
  −
The propositional expression of the form "pi_rj" says:
  −
  −
| At the point-in-time p_i,
  −
| the tape-head H is on the tape-cell r_j.
  −
  −
For the "Present Symbol Function" SF : P -> (R -> S),
  −
  −
{p0_r0_s#, p0_r0_s*, p0_r0_s0, p0_r0_s1,
  −
p0_r1_s#, p0_r1_s*, p0_r1_s0, p0_r1_s1,
  −
p0_r2_s#, p0_r2_s*, p0_r2_s0, p0_r2_s1,
  −
p0_r3_s#, p0_r3_s*, p0_r3_s0, p0_r3_s1,
  −
p1_r0_s#, p1_r0_s*, p1_r0_s0, p1_r0_s1,
  −
p1_r1_s#, p1_r1_s*, p1_r1_s0, p1_r1_s1,
  −
p1_r2_s#, p1_r2_s*, p1_r2_s0, p1_r2_s1,
  −
p1_r3_s#, p1_r3_s*, p1_r3_s0, p1_r3_s1,
  −
p2_r0_s#, p2_r0_s*, p2_r0_s0, p2_r0_s1,
  −
p2_r1_s#, p2_r1_s*, p2_r1_s0, p2_r1_s1,
  −
p2_r2_s#, p2_r2_s*, p2_r2_s0, p2_r2_s1,
  −
p2_r3_s#, p2_r3_s*, p2_r3_s0, p2_r3_s1,
  −
p3_r0_s#, p3_r0_s*, p3_r0_s0, p3_r0_s1,
  −
p3_r1_s#, p3_r1_s*, p3_r1_s0, p3_r1_s1,
  −
p3_r2_s#, p3_r2_s*, p3_r2_s0, p3_r2_s1,
  −
p3_r3_s#, p3_r3_s*, p3_r3_s0, p3_r3_s1}
  −
  −
The propositional expression of the form "pi_rj_sk" says:
  −
  −
| At the point-in-time p_i,
  −
| the tape-cell r_j bears the mark s_k.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~INPUTS~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Here are the Initial Conditions
  −
for the two possible inputs to the
  −
Ref Log redaction of this Parity TM:
  −
  −
o~~~~~~~~~o~~~~~~~~~o~INPUT~0~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Initial Conditions:
  −
  −
p0_q0
  −
  −
p0_r1
  −
  −
p0_r0_s#
  −
p0_r1_s0
  −
p0_r2_s#
  −
  −
The Initial Conditions are given by a logical conjunction
  −
that is composed of 5 basic expressions, altogether stating:
  −
  −
| At the point-in-time p_0, M is in the state q_0, and
  −
| At the point-in-time p_0, H is on the cell  r_1, and
  −
| At the point-in-time p_0, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_0, cell r_1 bears the mark "0", and
  −
| At the point-in-time p_0, cell r_2 bears the mark "#".
  −
  −
o~~~~~~~~~o~~~~~~~~~o~INPUT~1~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Initial Conditions:
  −
  −
p0_q0
  −
  −
p0_r1
  −
  −
p0_r0_s#
  −
p0_r1_s1
  −
p0_r2_s#
  −
  −
The Initial Conditions are given by a logical conjunction
  −
that is composed of 5 basic expressions, altogether stating:
  −
  −
| At the point-in-time p_0, M is in the state q_0, and
  −
| At the point-in-time p_0, H is on the cell  r_1, and
  −
| At the point-in-time p_0, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_0, cell r_1 bears the mark "1", and
  −
| At the point-in-time p_0, cell r_2 bears the mark "#".
  −
  −
o~~~~~~~~~o~~~~~~~~~o~PROGRAM~o~~~~~~~~~o~~~~~~~~~o
  −
  −
And here, yet again, just to store it nearby,
  −
is the logical rendition of the TM's program:
  −
  −
Mediate Conditions:
  −
  −
( p0_q#  ( p1_q# ))
  −
( p0_q*  ( p1_q* ))
  −
  −
( p1_q#  ( p2_q# ))
  −
( p1_q*  ( p2_q* ))
  −
  −
Terminal Conditions:
  −
  −
(( p2_q# )( p2_q* ))
  −
  −
State Partition:
  −
  −
(( p0_q0 ),( p0_q1 ),( p0_q# ),( p0_q* ))
  −
(( p1_q0 ),( p1_q1 ),( p1_q# ),( p1_q* ))
  −
(( p2_q0 ),( p2_q1 ),( p2_q# ),( p2_q* ))
  −
  −
Register Partition:
  −
  −
(( p0_r0 ),( p0_r1 ),( p0_r2 ))
  −
(( p1_r0 ),( p1_r1 ),( p1_r2 ))
  −
(( p2_r0 ),( p2_r1 ),( p2_r2 ))
  −
  −
Symbol Partition:
  −
  −
(( p0_r0_s0 ),( p0_r0_s1 ),( p0_r0_s# ))
  −
(( p0_r1_s0 ),( p0_r1_s1 ),( p0_r1_s# ))
  −
(( p0_r2_s0 ),( p0_r2_s1 ),( p0_r2_s# ))
  −
  −
(( p1_r0_s0 ),( p1_r0_s1 ),( p1_r0_s# ))
  −
(( p1_r1_s0 ),( p1_r1_s1 ),( p1_r1_s# ))
  −
(( p1_r2_s0 ),( p1_r2_s1 ),( p1_r2_s# ))
  −
  −
(( p2_r0_s0 ),( p2_r0_s1 ),( p2_r0_s# ))
  −
(( p2_r1_s0 ),( p2_r1_s1 ),( p2_r1_s# ))
  −
(( p2_r2_s0 ),( p2_r2_s1 ),( p2_r2_s# ))
  −
  −
Interaction Conditions:
  −
  −
(( p0_r0 ) p0_r0_s0 ( p1_r0_s0 ))
  −
(( p0_r0 ) p0_r0_s1 ( p1_r0_s1 ))
  −
(( p0_r0 ) p0_r0_s# ( p1_r0_s# ))
  −
  −
(( p0_r1 ) p0_r1_s0 ( p1_r1_s0 ))
  −
(( p0_r1 ) p0_r1_s1 ( p1_r1_s1 ))
  −
(( p0_r1 ) p0_r1_s# ( p1_r1_s# ))
  −
  −
(( p0_r2 ) p0_r2_s0 ( p1_r2_s0 ))
  −
(( p0_r2 ) p0_r2_s1 ( p1_r2_s1 ))
  −
(( p0_r2 ) p0_r2_s# ( p1_r2_s# ))
  −
  −
(( p1_r0 ) p1_r0_s0 ( p2_r0_s0 ))
  −
(( p1_r0 ) p1_r0_s1 ( p2_r0_s1 ))
  −
(( p1_r0 ) p1_r0_s# ( p2_r0_s# ))
  −
  −
(( p1_r1 ) p1_r1_s0 ( p2_r1_s0 ))
  −
(( p1_r1 ) p1_r1_s1 ( p2_r1_s1 ))
  −
(( p1_r1 ) p1_r1_s# ( p2_r1_s# ))
  −
  −
(( p1_r2 ) p1_r2_s0 ( p2_r2_s0 ))
  −
(( p1_r2 ) p1_r2_s1 ( p2_r2_s1 ))
  −
(( p1_r2 ) p1_r2_s# ( p2_r2_s# ))
  −
  −
Transition Relations:
  −
  −
( p0_q0  p0_r1  p0_r1_s0  ( p1_q0  p1_r2  p1_r1_s0 ))
  −
( p0_q0  p0_r1  p0_r1_s1  ( p1_q1  p1_r2  p1_r1_s1 ))
  −
( p0_q0  p0_r1  p0_r1_s#  ( p1_q#  p1_r0  p1_r1_s# ))
  −
( p0_q0  p0_r2  p0_r2_s#  ( p1_q#  p1_r1  p1_r2_s# ))
  −
  −
( p0_q1  p0_r1  p0_r1_s0  ( p1_q1  p1_r2  p1_r1_s0 ))
  −
( p0_q1  p0_r1  p0_r1_s1  ( p1_q0  p1_r2  p1_r1_s1 ))
  −
( p0_q1  p0_r1  p0_r1_s#  ( p1_q*  p1_r0  p1_r1_s# ))
  −
( p0_q1  p0_r2  p0_r2_s#  ( p1_q*  p1_r1  p1_r2_s# ))
  −
  −
( p1_q0  p1_r1  p1_r1_s0  ( p2_q0  p2_r2  p2_r1_s0 ))
  −
( p1_q0  p1_r1  p1_r1_s1  ( p2_q1  p2_r2  p2_r1_s1 ))
  −
( p1_q0  p1_r1  p1_r1_s#  ( p2_q#  p2_r0  p2_r1_s# ))
  −
( p1_q0  p1_r2  p1_r2_s#  ( p2_q#  p2_r1  p2_r2_s# ))
  −
  −
( p1_q1  p1_r1  p1_r1_s0  ( p2_q1  p2_r2  p2_r1_s0 ))
  −
( p1_q1  p1_r1  p1_r1_s1  ( p2_q0  p2_r2  p2_r1_s1 ))
  −
( p1_q1  p1_r1  p1_r1_s#  ( p2_q*  p2_r0  p2_r1_s# ))
  −
( p1_q1  p1_r2  p1_r2_s#  ( p2_q*  p2_r1  p2_r2_s# ))
  −
  −
o~~~~~~~~~o~~~~~~~~~o~INTERPRETATION~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Interpretation of the Propositional Program:
  −
  −
Mediate Conditions:
  −
  −
( p0_q#  ( p1_q# ))
  −
( p0_q*  ( p1_q* ))
  −
  −
( p1_q#  ( p2_q# ))
  −
( p1_q*  ( p2_q* ))
  −
  −
In Ref Log, an expression of the form "( X ( Y ))"
  −
expresses an implication or an if-then proposition:
  −
"Not X without Y",  "If X then Y",  "X => Y",  etc.
  −
  −
A text string expression of the form "( X ( Y ))"
  −
parses to a graphical data-structure of the form:
  −
  −
    X  Y
  −
    o---o
  −
    |
  −
    @
  −
  −
All together, these Mediate Conditions state:
  −
  −
| If at p_0  M is in state q_#, then at p_1  M is in state q_#, and
  −
| If at p_0  M is in state q_*, then at p_1  M is in state q_*, and
  −
| If at p_1  M is in state q_#, then at p_2  M is in state q_#, and
  −
| If at p_1  M is in state q_*, then at p_2  M is in state q_*.
  −
  −
Terminal Conditions:
  −
  −
(( p2_q# )( p2_q* ))
  −
  −
In Ref Log, an expression of the form "(( X )( Y ))"
  −
expresses a disjunction "X or Y" and it parses into:
  −
  −
    X  Y
  −
    o  o
  −
    \ /
  −
      o
  −
      |
  −
      @
  −
  −
In effect, the Terminal Conditions state:
  −
  −
| At p_2,  M is in state q_#, or
  −
| At p_2,  M is in state q_*.
  −
  −
State Partition:
  −
  −
(( p0_q0 ),( p0_q1 ),( p0_q# ),( p0_q* ))
  −
(( p1_q0 ),( p1_q1 ),( p1_q# ),( p1_q* ))
  −
(( p2_q0 ),( p2_q1 ),( p2_q# ),( p2_q* ))
  −
  −
In Ref Log, an expression of the form "(( e_1 ),( e_2 ),( ... ),( e_k ))"
  −
expresses the fact that "exactly one of the e_j is true, for j = 1 to k".
  −
Expressions of this form are called "universal partition" expressions, and
  −
they parse into a type of graph called a "painted and rooted cactus" (PARC):
  −
  −
    e_1  e_2  ...  e_k
  −
    o    o          o
  −
    |    |          |
  −
    o-----o--- ... ---o
  −
      \              /
  −
      \            /
  −
        \          /
  −
        \        /
  −
          \      /
  −
          \    /
  −
            \  /
  −
            \ /
  −
              @
  −
  −
The State Partition expresses the conditions that:
  −
  −
| At each of the points-in-time p_i, for i = 0 to 2,
  −
| M can be in exactly one state q_j, for j in the set {0, 1, #, *}.
  −
  −
Register Partition:
  −
  −
(( p0_r0 ),( p0_r1 ),( p0_r2 ))
  −
(( p1_r0 ),( p1_r1 ),( p1_r2 ))
  −
(( p2_r0 ),( p2_r1 ),( p2_r2 ))
  −
  −
The Register Partition expresses the conditions that:
  −
  −
| At each of the points-in-time p_i, for i = 0 to 2,
  −
| H can be on exactly one cell  r_j, for j = 0 to 2.
  −
  −
Symbol Partition:
  −
  −
(( p0_r0_s0 ),( p0_r0_s1 ),( p0_r0_s# ))
  −
(( p0_r1_s0 ),( p0_r1_s1 ),( p0_r1_s# ))
  −
(( p0_r2_s0 ),( p0_r2_s1 ),( p0_r2_s# ))
  −
  −
(( p1_r0_s0 ),( p1_r0_s1 ),( p1_r0_s# ))
  −
(( p1_r1_s0 ),( p1_r1_s1 ),( p1_r1_s# ))
  −
(( p1_r2_s0 ),( p1_r2_s1 ),( p1_r2_s# ))
  −
  −
(( p2_r0_s0 ),( p2_r0_s1 ),( p2_r0_s# ))
  −
(( p2_r1_s0 ),( p2_r1_s1 ),( p2_r1_s# ))
  −
(( p2_r2_s0 ),( p2_r2_s1 ),( p2_r2_s# ))
  −
  −
The Symbol Partition expresses the conditions that:
  −
  −
| At each of the points-in-time p_i, for i in {0, 1, 2},
  −
| in each of the tape-registers r_j, for j in {0, 1, 2},
  −
| there can be exactly one sign s_k, for k in {0, 1, #}.
  −
  −
Interaction Conditions:
  −
  −
(( p0_r0 ) p0_r0_s0 ( p1_r0_s0 ))
  −
(( p0_r0 ) p0_r0_s1 ( p1_r0_s1 ))
  −
(( p0_r0 ) p0_r0_s# ( p1_r0_s# ))
  −
  −
(( p0_r1 ) p0_r1_s0 ( p1_r1_s0 ))
  −
(( p0_r1 ) p0_r1_s1 ( p1_r1_s1 ))
  −
(( p0_r1 ) p0_r1_s# ( p1_r1_s# ))
  −
  −
(( p0_r2 ) p0_r2_s0 ( p1_r2_s0 ))
  −
(( p0_r2 ) p0_r2_s1 ( p1_r2_s1 ))
  −
(( p0_r2 ) p0_r2_s# ( p1_r2_s# ))
  −
  −
(( p1_r0 ) p1_r0_s0 ( p2_r0_s0 ))
  −
(( p1_r0 ) p1_r0_s1 ( p2_r0_s1 ))
  −
(( p1_r0 ) p1_r0_s# ( p2_r0_s# ))
  −
  −
(( p1_r1 ) p1_r1_s0 ( p2_r1_s0 ))
  −
(( p1_r1 ) p1_r1_s1 ( p2_r1_s1 ))
  −
(( p1_r1 ) p1_r1_s# ( p2_r1_s# ))
  −
  −
(( p1_r2 ) p1_r2_s0 ( p2_r2_s0 ))
  −
(( p1_r2 ) p1_r2_s1 ( p2_r2_s1 ))
  −
(( p1_r2 ) p1_r2_s# ( p2_r2_s# ))
  −
  −
In briefest terms, the Interaction Conditions merely express
  −
the circumstance that the sign in a tape-cell cannot change
  −
between two points-in-time unless the tape-head is over the
  −
cell in question at the initial one of those points-in-time.
  −
All that we have to do is to see how they manage to say this.
  −
  −
In Ref Log, an expression of the following form:
  −
  −
"(( p<i>_r<j> ) p<i>_r<j>_s<k> ( p<i+1>_r<j>_s<k> ))",
  −
  −
and which parses as the graph:
  −
  −
      p<i>_r<j> o  o  p<i+1>_r<j>_s<k>
  −
                  \ /
  −
    p<i>_r<j>_s<k> o
  −
                  |
  −
                  @
  −
  −
can be read in the form of the following implication:
  −
  −
| If
  −
| at the point-in-time p<i>, the tape-cell r<j> bears the mark s<k>,
  −
| but it is not the case that
  −
| at the point-in-time p<i>, the tape-head is on the tape-cell r<j>.
  −
| then
  −
| at the point-in-time p<i+1>, the tape-cell r<j> bears the mark s<k>.
  −
  −
Folks among us of a certain age and a peculiar manner of acculturation will
  −
recognize these as the "Frame Conditions" for the change of state of the TM.
  −
  −
Transition Relations:
  −
  −
( p0_q0  p0_r1  p0_r1_s0  ( p1_q0  p1_r2  p1_r1_s0 ))
  −
( p0_q0  p0_r1  p0_r1_s1  ( p1_q1  p1_r2  p1_r1_s1 ))
  −
( p0_q0  p0_r1  p0_r1_s#  ( p1_q#  p1_r0  p1_r1_s# ))
  −
( p0_q0  p0_r2  p0_r2_s#  ( p1_q#  p1_r1  p1_r2_s# ))
  −
  −
( p0_q1  p0_r1  p0_r1_s0  ( p1_q1  p1_r2  p1_r1_s0 ))
  −
( p0_q1  p0_r1  p0_r1_s1  ( p1_q0  p1_r2  p1_r1_s1 ))
  −
( p0_q1  p0_r1  p0_r1_s#  ( p1_q*  p1_r0  p1_r1_s# ))
  −
( p0_q1  p0_r2  p0_r2_s#  ( p1_q*  p1_r1  p1_r2_s# ))
  −
  −
( p1_q0  p1_r1  p1_r1_s0  ( p2_q0  p2_r2  p2_r1_s0 ))
  −
( p1_q0  p1_r1  p1_r1_s1  ( p2_q1  p2_r2  p2_r1_s1 ))
  −
( p1_q0  p1_r1  p1_r1_s#  ( p2_q#  p2_r0  p2_r1_s# ))
  −
( p1_q0  p1_r2  p1_r2_s#  ( p2_q#  p2_r1  p2_r2_s# ))
  −
  −
( p1_q1  p1_r1  p1_r1_s0  ( p2_q1  p2_r2  p2_r1_s0 ))
  −
( p1_q1  p1_r1  p1_r1_s1  ( p2_q0  p2_r2  p2_r1_s1 ))
  −
( p1_q1  p1_r1  p1_r1_s#  ( p2_q*  p2_r0  p2_r1_s# ))
  −
( p1_q1  p1_r2  p1_r2_s#  ( p2_q*  p2_r1  p2_r2_s# ))
  −
  −
The Transition Conditions merely serve to express,
  −
by means of 16 complex implication expressions,
  −
the data of the TM table that was given above.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~OUTPUTS~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
And here are the outputs of the computation,
  −
as emulated by its propositional rendition,
  −
and as actually generated within that form
  −
of transmogrification by the program that
  −
I wrote for finding all of the satisfying
  −
interpretations (truth-value assignments)
  −
of propositional expressions in Ref Log:
  −
  −
o~~~~~~~~~o~~~~~~~~~o~OUTPUT~0~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Output Conditions:
  −
  −
p0_q0
  −
  p0_r1
  −
  p0_r0_s#
  −
    p0_r1_s0
  −
    p0_r2_s#
  −
      p1_q0
  −
      p1_r2
  −
        p1_r2_s#
  −
        p1_r0_s#
  −
          p1_r1_s0
  −
          p2_q#
  −
            p2_r1
  −
            p2_r0_s#
  −
              p2_r1_s0
  −
              p2_r2_s#
  −
  −
The Output Conditions amount to the sole satisfying interpretation,
  −
that is, a "sequence of truth-value assignments" (SOTVA) that make
  −
the entire proposition come out true, and they state the following:
  −
  −
| At the point-in-time p_0, M is in the state q_0,      and
  −
| At the point-in-time p_0, H is on the cell  r_1,      and
  −
| At the point-in-time p_0, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_0, cell r_1 bears the mark "0", and
  −
| At the point-in-time p_0, cell r_2 bears the mark "#", and
  −
|
  −
| At the point-in-time p_1, M is in the state q_0,      and
  −
| At the point-in-time p_1, H is on the cell  r_2,      and
  −
| At the point-in-time p_1, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_1, cell r_1 bears the mark "0", and
  −
| At the point-in-time p_1, cell r_2 bears the mark "#", and
  −
|
  −
| At the point-in-time p_2, M is in the state q_#,      and
  −
| At the point-in-time p_2, H is on the cell  r_1,      and
  −
| At the point-in-time p_2, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_2, cell r_1 bears the mark "0", and
  −
| At the point-in-time p_2, cell r_2 bears the mark "#".
  −
  −
In brief, the output for our sake being the symbol that rests
  −
under the tape-head H when the machine M gets to a rest state,
  −
we are now amazed by the remarkable result that Parity(0) = 0.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~OUTPUT~1~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Output Conditions:
  −
  −
p0_q0
  −
  p0_r1
  −
  p0_r0_s#
  −
    p0_r1_s1
  −
    p0_r2_s#
  −
      p1_q1
  −
      p1_r2
  −
        p1_r2_s#
  −
        p1_r0_s#
  −
          p1_r1_s1
  −
          p2_q*
  −
            p2_r1
  −
            p2_r0_s#
  −
              p2_r1_s1
  −
              p2_r2_s#
  −
  −
The Output Conditions amount to the sole satisfying interpretation,
  −
that is, a "sequence of truth-value assignments" (SOTVA) that make
  −
the entire proposition come out true, and they state the following:
  −
  −
| At the point-in-time p_0, M is in the state q_0,      and
  −
| At the point-in-time p_0, H is on the cell  r_1,      and
  −
| At the point-in-time p_0, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_0, cell r_1 bears the mark "1", and
  −
| At the point-in-time p_0, cell r_2 bears the mark "#", and
  −
|
  −
| At the point-in-time p_1, M is in the state q_1,      and
  −
| At the point-in-time p_1, H is on the cell  r_2,      and
  −
| At the point-in-time p_1, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_1, cell r_1 bears the mark "1", and
  −
| At the point-in-time p_1, cell r_2 bears the mark "#", and
  −
|
  −
| At the point-in-time p_2, M is in the state q_*,      and
  −
| At the point-in-time p_2, H is on the cell  r_1,      and
  −
| At the point-in-time p_2, cell r_0 bears the mark "#", and
  −
| At the point-in-time p_2, cell r_1 bears the mark "1", and
  −
| At the point-in-time p_2, cell r_2 bears the mark "#".
  −
  −
In brief, the output for our sake being the symbol that rests
  −
under the tape-head H when the machine M gets to a rest state,
  −
we are now amazed by the remarkable result that Parity(1) = 1.
  −
  −
I realized after sending that last bunch of bits that there is room
  −
for confusion about what is the input/output of the Study module of
  −
the Theme One program as opposed to what is the input/output of the
  −
"finitely approximated turing automaton" (FATA).  So here is better
  −
delineation of what's what.  The input to Study is a text file that
  −
is known as LogFile(Whatever) and the output of Study is a sequence
  −
of text files that summarize the various canonical and normal forms
  −
that it generates.  For short, let us call these NormFile(Whatelse).
  −
With that in mind, here are the actual IO's of Study, excluding the
  −
glosses in square brackets:
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~INPUT~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
[Input To Study = FATA Initial Conditions + FATA Program Conditions]
  −
  −
[FATA Initial Conditions For Input 0]
  −
  −
p0_q0
  −
  −
p0_r1
  −
  −
p0_r0_s#
  −
p0_r1_s0
  −
p0_r2_s#
  −
  −
[FATA Program Conditions For Parity Machine]
  −
  −
[Mediate Conditions]
  −
  −
( p0_q#  ( p1_q# ))
  −
( p0_q*  ( p1_q* ))
  −
  −
( p1_q#  ( p2_q# ))
  −
( p1_q*  ( p2_q* ))
  −
  −
[Terminal Conditions]
  −
  −
(( p2_q# )( p2_q* ))
  −
  −
[State Partition]
  −
  −
(( p0_q0 ),( p0_q1 ),( p0_q# ),( p0_q* ))
  −
(( p1_q0 ),( p1_q1 ),( p1_q# ),( p1_q* ))
  −
(( p2_q0 ),( p2_q1 ),( p2_q# ),( p2_q* ))
  −
  −
[Register Partition]
  −
  −
(( p0_r0 ),( p0_r1 ),( p0_r2 ))
  −
(( p1_r0 ),( p1_r1 ),( p1_r2 ))
  −
(( p2_r0 ),( p2_r1 ),( p2_r2 ))
  −
  −
[Symbol Partition]
  −
  −
(( p0_r0_s0 ),( p0_r0_s1 ),( p0_r0_s# ))
  −
(( p0_r1_s0 ),( p0_r1_s1 ),( p0_r1_s# ))
  −
(( p0_r2_s0 ),( p0_r2_s1 ),( p0_r2_s# ))
  −
  −
(( p1_r0_s0 ),( p1_r0_s1 ),( p1_r0_s# ))
  −
(( p1_r1_s0 ),( p1_r1_s1 ),( p1_r1_s# ))
  −
(( p1_r2_s0 ),( p1_r2_s1 ),( p1_r2_s# ))
  −
  −
(( p2_r0_s0 ),( p2_r0_s1 ),( p2_r0_s# ))
  −
(( p2_r1_s0 ),( p2_r1_s1 ),( p2_r1_s# ))
  −
(( p2_r2_s0 ),( p2_r2_s1 ),( p2_r2_s# ))
  −
  −
[Interaction Conditions]
  −
  −
(( p0_r0 ) p0_r0_s0 ( p1_r0_s0 ))
  −
(( p0_r0 ) p0_r0_s1 ( p1_r0_s1 ))
  −
(( p0_r0 ) p0_r0_s# ( p1_r0_s# ))
  −
  −
(( p0_r1 ) p0_r1_s0 ( p1_r1_s0 ))
  −
(( p0_r1 ) p0_r1_s1 ( p1_r1_s1 ))
  −
(( p0_r1 ) p0_r1_s# ( p1_r1_s# ))
  −
  −
(( p0_r2 ) p0_r2_s0 ( p1_r2_s0 ))
  −
(( p0_r2 ) p0_r2_s1 ( p1_r2_s1 ))
  −
(( p0_r2 ) p0_r2_s# ( p1_r2_s# ))
  −
  −
(( p1_r0 ) p1_r0_s0 ( p2_r0_s0 ))
  −
(( p1_r0 ) p1_r0_s1 ( p2_r0_s1 ))
  −
(( p1_r0 ) p1_r0_s# ( p2_r0_s# ))
  −
  −
(( p1_r1 ) p1_r1_s0 ( p2_r1_s0 ))
  −
(( p1_r1 ) p1_r1_s1 ( p2_r1_s1 ))
  −
(( p1_r1 ) p1_r1_s# ( p2_r1_s# ))
  −
  −
(( p1_r2 ) p1_r2_s0 ( p2_r2_s0 ))
  −
(( p1_r2 ) p1_r2_s1 ( p2_r2_s1 ))
  −
(( p1_r2 ) p1_r2_s# ( p2_r2_s# ))
  −
  −
[Transition Relations]
  −
  −
( p0_q0  p0_r1  p0_r1_s0  ( p1_q0  p1_r2  p1_r1_s0 ))
  −
( p0_q0  p0_r1  p0_r1_s1  ( p1_q1  p1_r2  p1_r1_s1 ))
  −
( p0_q0  p0_r1  p0_r1_s#  ( p1_q#  p1_r0  p1_r1_s# ))
  −
( p0_q0  p0_r2  p0_r2_s#  ( p1_q#  p1_r1  p1_r2_s# ))
  −
  −
( p0_q1  p0_r1  p0_r1_s0  ( p1_q1  p1_r2  p1_r1_s0 ))
  −
( p0_q1  p0_r1  p0_r1_s1  ( p1_q0  p1_r2  p1_r1_s1 ))
  −
( p0_q1  p0_r1  p0_r1_s#  ( p1_q*  p1_r0  p1_r1_s# ))
  −
( p0_q1  p0_r2  p0_r2_s#  ( p1_q*  p1_r1  p1_r2_s# ))
  −
  −
( p1_q0  p1_r1  p1_r1_s0  ( p2_q0  p2_r2  p2_r1_s0 ))
  −
( p1_q0  p1_r1  p1_r1_s1  ( p2_q1  p2_r2  p2_r1_s1 ))
  −
( p1_q0  p1_r1  p1_r1_s#  ( p2_q#  p2_r0  p2_r1_s# ))
  −
( p1_q0  p1_r2  p1_r2_s#  ( p2_q#  p2_r1  p2_r2_s# ))
  −
  −
( p1_q1  p1_r1  p1_r1_s0  ( p2_q1  p2_r2  p2_r1_s0 ))
  −
( p1_q1  p1_r1  p1_r1_s1  ( p2_q0  p2_r2  p2_r1_s1 ))
  −
( p1_q1  p1_r1  p1_r1_s#  ( p2_q*  p2_r0  p2_r1_s# ))
  −
( p1_q1  p1_r2  p1_r2_s#  ( p2_q*  p2_r1  p2_r2_s# ))
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~OUTPUT~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
[Output Of Study = FATA Output For Input 0]
  −
  −
p0_q0
  −
  p0_r1
  −
  p0_r0_s#
  −
    p0_r1_s0
  −
    p0_r2_s#
  −
      p1_q0
  −
      p1_r2
  −
        p1_r2_s#
  −
        p1_r0_s#
  −
          p1_r1_s0
  −
          p2_q#
  −
            p2_r1
  −
            p2_r0_s#
  −
              p2_r1_s0
  −
              p2_r2_s#
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Turing automata, finitely approximated or not, make my head spin and
  −
my tape go loopy, and I still believe 'twere a far better thing I do
  −
if I work up to that level of complexity in a more gracile graduated
  −
manner.  So let us return to our Example in this gradual progress to
  −
that vastly more well-guarded grail of our long-term pilgrim's quest:
  −
  −
|                  boy  male          girl  female
  −
|                    o---o child          o---o child
  −
|  male  female      \ /                  \ /              child  human
  −
|    o---o            o                    o                    o--o
  −
|      \ /            |                    |                    |
  −
|      @              @                    @                    @
  −
|
  −
| (male , female)((boy , male child))((girl , female child))(child (human))
  −
  −
One section of the Theme One program has a suite of utilities that fall
  −
under the title "Theme One Study" ("To Study", or just "TOS" for short).
  −
To Study is to read and to parse a so-called and a generally so-suffixed
  −
"log" file, and then to conjoin what is called a "query", which is really
  −
just an additional propositional expression that imposes a further logical
  −
constraint on the input expression.
  −
  −
The Figure roughly sketches the conjuncts of the graph-theoretic
  −
data structure that the parser would commit to memory on reading
  −
the appropriate log file that contains the text along the bottom.
  −
  −
I will now explain the various sorts of things that the TOS utility
  −
can do with the log file that describes the universe of discourse in
  −
our present Example.
  −
  −
Theme One Study is built around a suite of four successive generators
  −
of "normal forms" for propositional expressions, just to use that term
  −
in a very approximate way.  The functions that compute these normal forms
  −
are called "Model", "Tenor", "Canon", and "Sense", and so we may refer to
  −
to their text-style outputs as the "mod", "ten", "can", and "sen" files.
  −
  −
Though it could be any propositional expression on the same vocabulary
  −
$A$ = {"boy", "child", "female", "girl", "human", "male"}, more usually
  −
the query is a simple conjunction of one or more positive features that
  −
we want to focus on or perhaps to filter out of the logical model space.
  −
On our first run through this Example, we take the log file proposition
  −
as it is, with no extra riders.
  −
  −
| Procedural Note.  TO Study Model displays a running tab of how much
  −
| free memory space it has left.  On some of the harder problems that
  −
| you may think of to give it, Model may run out of free memory and
  −
| terminate, abnormally exiting Theme One.  Sometimes it helps to:
  −
|
  −
| 1.  Rephrase the problem in logically equivalent
  −
|    but rhetorically increasedly felicitous ways.
  −
|
  −
| 2.  Think of additional facts that are taken for granted but not
  −
|    made explicit and that cannot be logically inferred by Model.
  −
  −
After Model has finished, it is ready to write out its mod file,
  −
which you may choose to show on the screen or save to a named file.
  −
Mod files are usually too long to see (or to care to see) all at once
  −
on the screen, so it is very often best to save them for later replay.
  −
In our Example the Model function yields a mod file that looks like so:
  −
  −
Model Output and
  −
Mod File Example
  −
o-------------------o
  −
| male              |
  −
|  female -        |  1
  −
|  (female )        |
  −
|  girl -          |  2
  −
|  (girl )        |
  −
|    child          |
  −
|    boy          |
  −
|      human *      |  3 *
  −
|      (human ) -  |  4
  −
|    (boy ) -      |  5
  −
|    (child )      |
  −
|    boy -        |  6
  −
|    (boy ) *      |  7 *
  −
| (male )          |
  −
|  female          |
  −
|  boy -          |  8
  −
|  (boy )          |
  −
|    child          |
  −
|    girl          |
  −
|      human *      |  9 *
  −
|      (human ) -  | 10
  −
|    (girl ) -    | 11
  −
|    (child )      |
  −
|    girl -        | 12
  −
|    (girl ) *    | 13 *
  −
|  (female ) -      | 14
  −
o-------------------o
  −
  −
Counting the stars "*" that indicate true interpretations
  −
and the bars "-" that indicate false interpretations of
  −
the input formula, we can see that the Model function,
  −
out of the 64 possible interpretations, has actually
  −
gone through the work of making just 14 evaluations,
  −
all in order to find the 4 models that are allowed
  −
by the input definitions.
  −
  −
To be clear about what this output means, the starred paths
  −
indicate all of the complete specifications of objects in the
  −
universe of discourse, that is, all of the consistent feature
  −
conjunctions of maximum length, as permitted by the definitions
  −
that are given in the log file.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Let's take a little break from the Example in progress
  −
and look at where we are and what we have been doing from
  −
computational, logical, and semiotic perspectives.  Because,
  −
after all, as is usually the case, we should not let our focus
  −
and our fascination with this particular Example prevent us from
  −
recognizing it, and all that we do with it, as just an Example of
  −
much broader paradigms and predicaments and principles, not to say
  −
but a glimmer of ultimately more concernful and fascinating objects.
  −
  −
I chart the progression that we have just passed through in this way:
  −
  −
|                    Parse
  −
|      Sign A  o-------------->o  Sign 1
  −
|            ^                |
  −
|            /                |
  −
|          /                  |
  −
|          /                  |
  −
| Object  o                    |  Transform
  −
|          ^                  |
  −
|          \                  |
  −
|            \                |
  −
|            \                v
  −
|      Sign B  o<--------------o  Sign 2
  −
|                    Verse
  −
|
  −
| Figure.  Computation As Sign Transformation
  −
  −
In the present case, the Object is an objective situation
  −
or a state of affairs, in effect, a particular pattern of
  −
feature concurrences occurring to us in that world through
  −
which we find ourselves most frequently faring, wily nily,
  −
and the Signs are different tokens and different types of
  −
data structures that we somehow or other find it useful
  −
to devise or to discover for the sake of representing
  −
current objects to ourselves on a recurring basis.
  −
  −
But not all signs, not even signs of a single object, are alike
  −
in every other respect that one might name, not even with respect
  −
to their powers of relating, significantly, to that common object.
  −
  −
And that is what our whole business of computation busies itself about,
  −
when it minds its business best, that is, transmuting signs into signs
  −
in ways that augment their powers of relating significantly to objects.
  −
  −
We have seen how the Model function and the mod output format
  −
indicate all of the complete specifications of objects in the
  −
universe of discourse, that is, all of the consistent feature
  −
conjunctions of maximal specificity that are permitted by the
  −
constraints or the definitions that are given in the log file.
  −
  −
To help identify these specifications of particular cells in
  −
the universe of discourse, the next function and output format,
  −
called "Tenor", edits the mod file to give only the true paths,
  −
in effect, the "positive models", that are by default what we
  −
usually mean when we say "models", and not the "anti-models"
  −
or the "negative models" that fail to satisfy the formula
  −
in question.
  −
  −
In the present Example the Tenor function
  −
generates a Ten file that looks like this:
  −
  −
Tenor Output and
  −
Ten File Example
  −
o-------------------o
  −
| male              |
  −
|  (female )        |
  −
|  (girl )        |
  −
|    child          |
  −
|    boy          |
  −
|      human *      | <1>
  −
|    (child )      |
  −
|    (boy ) *      | <2>
  −
| (male )          |
  −
|  female          |
  −
|  (boy )          |
  −
|    child          |
  −
|    girl          |
  −
|      human *      | <3>
  −
|    (child )      |
  −
|    (girl ) *    | <4>
  −
o-------------------o
  −
  −
As I said, the Tenor function just abstracts a transcript of the models,
  −
that is, the satisfying interpretations, that were already interspersed
  −
throughout the complete Model output.  These specifications, or feature
  −
conjunctions, with the positive and the negative features listed in the
  −
order of their actual budding on the "arboreal boolean expansion" twigs,
  −
may be gathered and arranged in this antherypulogical flowering bouquet:
  −
  −
1.  male  (female ) (girl )  child    boy    human  *
  −
2.  male  (female ) (girl ) (child ) (boy  )          *
  −
3.  (male )  female  (boy  )  child    girl    human  *
  −
4.  (male )  female  (boy  ) (child ) (girl )          *
  −
  −
Notice that Model, as reflected in this abstract, did not consider
  −
the six positive features in the same order along each path.  This
  −
is because the algorithm was designed to proceed opportunistically
  −
in its attempt to reduce the original proposition through a series
  −
of case-analytic considerations and the resulting simplifications.
  −
  −
Notice, too, that Model is something of a lazy evaluator, quitting work
  −
when and if a value is determined by less than the full set of variables.
  −
This is the reason why paths <2> and <4> are not ostensibly of the maximum
  −
length.  According to this lazy mode of understanding, any path that is not
  −
specified on a set of features really stands for the whole bundle of paths
  −
that are derived by freely varying those features.  Thus, specifications
  −
<2> and <4> summarize four models altogether, with the logical choice
  −
between "human" and "not human" being left open at the point where
  −
they leave off their branches in the releavent deciduous tree.
  −
  −
The last two functions in the Study section, "Canon" and "Sense",
  −
extract further derivatives of the normal forms that are produced
  −
by Model and Tenor.  Both of these functions take the set of model
  −
paths and simply throw away the negative labels.  You may think of
  −
these as the "rose colored glasses" or "job interview" normal forms,
  −
in that they try to say everything that's true, so long as it can be
  −
expressed in positive terms.  Generally, this would mean losing a lot
  −
of information, and the result could no longer be expected to have the
  −
property of remaining logically equivalent to the original proposition.
  −
  −
Fortunately, however, it seems that this type of positive projection of
  −
the whole truth is just what is possible, most needed, and most clear in
  −
many of the "natural" examples, that is, in examples that arise from the
  −
domains of natural language and natural conceptual kinds.  In these cases,
  −
where most of the logical features are redundantly coded, for example, in
  −
the way that "adult" = "not child" and "child" = "not adult", the positive
  −
feature bearing redacts are often sufficiently expressive all by themselves.
  −
  −
Canon merely censors its printing of the negative labels as it traverses the
  −
model tree.  This leaves the positive labels in their original columns of the
  −
outline form, giving it a slightly skewed appearance.  This can be misleading
  −
unless you already know what you are looking for.  However, this Canon format
  −
is computationally quick, and frequently suffices, especially if you already
  −
have a likely clue about what to expect in the way of a question's outcome.
  −
  −
In the present Example the Canon function
  −
generates a Can file that looks like this:
  −
  −
Canon Output and
  −
Can File Example
  −
o-------------------o
  −
| male              |
  −
|    child          |
  −
|    boy          |
  −
|      human        |
  −
|  female          |
  −
|    child          |
  −
|    girl          |
  −
|      human        |
  −
o-------------------o
  −
  −
The Sense function does the extra work that is required
  −
to place the positive labels of the model tree at their
  −
proper level in the outline.
  −
  −
In the present Example the Sense function
  −
generates a Sen file that looks like this:
  −
  −
Sense Output and
  −
Sen File Example
  −
o-------------------o
  −
| male              |
  −
|  child            |
  −
|  boy            |
  −
|    human          |
  −
| female            |
  −
|  child            |
  −
|  girl            |
  −
|    human          |
  −
o-------------------o
  −
  −
The Canon and Sense outlines for this Example illustrate a certain
  −
type of general circumstance that needs to be noted at this point.
  −
Recall the model paths or the feature specifications that were
  −
numbered <2> and <4> in the listing of the output for Tenor.
  −
These paths, in effect, reflected Model's discovery that
  −
the venn diagram cells for male or female non-children
  −
and male or female non-humans were not excluded by
  −
the definitions that were given in the Log file.
  −
In the abstracts given by Canon and Sense, the
  −
specifications <2> and <4> have been subsumed,
  −
or absorbed unmarked, under the general topics
  −
of their respective genders, male or female.
  −
This happens because no purely positive
  −
features were supplied to distinguish
  −
the non-child and non-human cases.
  −
  −
That completes the discussion of
  −
this six-dimensional Example.
  −
  −
Nota Bene, for possible future use.  In the larger current of work
  −
with respect to which this meander of a conduit was initially both
  −
diversionary and tributary, before those high and dry regensquirm
  −
years when it turned into an intellectual interglacial oxbow lake,
  −
I once had in mind a scape in which expressions in a definitional
  −
lattice were ordered according to their simplicity on some scale
  −
or another, and in this setting the word "sense" was actually an
  −
acronym for "semantically equivalent next-simplest expression".
  −
  −
| If this is starting to sound a little bit familiar,
  −
| it may be because the relationship between the two
  −
| kinds of pictures of propositions, namely:
  −
|
  −
| 1.  Propositions about things in general, here,
  −
|    about the times when certain facts are true,
  −
|    having the form of functions f : X -> B,
  −
|
  −
| 2.  Propositions about binary codes, here, about
  −
|    the bit-vector labels on venn diagram cells,
  −
|    having the form of functions f' : B^k -> B,
  −
|
  −
| is an epically old story, one that I, myself,
  −
| have related one or twice upon a time before,
  −
| to wit, at least, at the following two cites:
  −
|
  −
| http://suo.ieee.org/email/msg01251.html
  −
| http://suo.ieee.org/email/msg01293.html
  −
|
  −
| There, and now here, once more, and again, it may be observed
  −
| that the relation is one whereby the proposition f : X -> B,
  −
| the one about things and times and mores in general, factors
  −
| into a coding function c : X -> B^k, followed by a derived
  −
| proposition f' : B^k -> B that judges the resulting codes.
  −
|
  −
|                        f
  −
|                  X o------>o B
  −
|                      \    ^
  −
|  c = <x_1, ..., x_k> \  / f'
  −
|                        v /
  −
|                        o
  −
|                        B^k
  −
|
  −
| You may remember that this was supposed to illustrate
  −
| the "factoring" of a proposition f : X -> B = {0, 1}
  −
| into the composition f'(c(x)), where c : X -> B^k is
  −
| the "coding" of each x in X as an k-bit string in B^k,
  −
| and where f' is the mapping of codes into a co-domain
  −
| that we interpret as t-f-values, B = {0, 1} = {F, T}.
  −
  −
In short, there is the standard equivocation ("systematic ambiguity"?) as to
  −
whether we are talking about the "applied" and concretely typed proposition
  −
f : X -> B or the "pure" and abstractly typed proposition f' : B^k -> B.
  −
Or we can think of the latter object as the approximate code icon of
  −
the former object.
  −
  −
Anyway, these types of formal objects are the sorts of things that
  −
I take to be the denotational objects of propositional expressions.
  −
These objects, along with their invarious and insundry mathematical
  −
properties, are the orders of things that I am talking about when
  −
I refer to the "invariant structures in these objects themselves".
  −
  −
"Invariant" means "invariant under a suitable set of transformations",
  −
in this case the translations between various languages that preserve
  −
the objects and the structures in question.  In extremest generality,
  −
this is what universal constructions in category theory are all about.
  −
  −
In summation, the functions f : X -> B and f' : B* -> B have invariant, formal,
  −
mathematical, objective properties that any adequate language might eventually
  −
evolve to express, only some languages express them more obscurely than others.
  −
  −
To be perfectly honest, I continue to be surprised that anybody in this group
  −
has trouble with this.  There are perfectly apt and familiar examples in the
  −
contrast between roman numerals and arabic numerals, or the contrast between
  −
redundant syntaxes, like those that use the pentalphabet {~, &, v, =>, <=>},
  −
and trimmer syntaxes, like those used in existential and conceptual graphs.
  −
Every time somebody says "Let's take {~, &, v, =>, <=>} as an operational
  −
basis for logic" it's just like that old joke that mathematicians tell on
  −
engineers where the ingenue in question says "1 is a prime, 2 is a prime,
  −
3 is a prime, 4 is a prime, ..." -- and I know you think that I'm being
  −
hyperbolic, but I'm really only up to parabolas here ...
  −
  −
I have already refined my criticism so that it does not apply to
  −
the spirit of FOL or KIF or whatever, but only to the letters of
  −
specific syntactic proposals.  There is a fact of the matter as
  −
to whether a concrete language provides a clean or a cluttered
  −
basis for representing the identified set of formal objects.
  −
And it shows up in pragmatic realities like the efficiency
  −
of real time concept formation, concept use, learnability,
  −
reasoning power, and just plain good use of real time.
  −
These are the dire consequences that I learned in my
  −
very first tries at mathematically oriented theorem
  −
automation, and the only factor that has obscured
  −
them in mainstream work since then is the speed
  −
with which folks can now do all of the same
  −
old dumb things that they used to do on
  −
their way to kludging out the answers.
  −
  −
It seems to be darn near impossible to explain to the
  −
centurion all of the neat stuff that he's missing by
  −
sticking to his old roman numerals.  He just keeps
  −
on reckoning that what he can't count must be of
  −
no account at all.  There is way too much stuff
  −
that these original syntaxes keep us from even
  −
beginning to discuss, like differential logic,
  −
just for starters.
  −
  −
Our next Example illustrates the use of the Cactus Language
  −
for representing "absolute" and "relative" partitions, also
  −
known as "complete" and "contingent" classifications of the
  −
universe of discourse, all of which amounts to divvying it
  −
up into mutually exclusive regions, exhaustive or not, as
  −
one frequently needs in situations involving a genus and
  −
its sundry species, and frequently pictures in the form
  −
of a venn diagram that looks just like a "pie chart".
  −
  −
Example.  Partition, Genus & Species
  −
  −
The idea that one needs for expressing partitions
  −
in cactus expressions can be summed up like this:
  −
  −
| If the propositional expression
  −
|
  −
| "( p , q , r , ... )"
  −
|
  −
| means that just one of
  −
|
  −
| p, q, r, ... is false,
  −
|
  −
| then the propositional expression
  −
|
  −
| "((p),(q),(r), ... )"
  −
|
  −
| must mean that just one of
  −
|
  −
| (p), (q), (r), ... is false,
  −
|
  −
| in other words, that just one of
  −
|
  −
| p, q, r, ... is true.
  −
  −
Thus we have an efficient means to express and to enforce
  −
a partition of the space of models, in effect, to maintain
  −
the condition that a number of features or propositions are
  −
to be held in mutually exclusive and exhaustive disjunction.
  −
This supplies a much needed bridge between the binary domain
  −
of two values and any other domain with a finite number of
  −
feature values.
  −
  −
Another variation on this theme allows one to maintain the
  −
subsumption of many separate species under an explicit genus.
  −
To see this, let us examine the following form of expression:
  −
  −
( q , ( q_1 ) , ( q_2 ) , ( q_3 ) ).
  −
  −
Now consider what it would mean for this to be true.  We see two cases:
  −
  −
1.  If the proposition q is true, then exactly one of the
  −
    propositions (q_1), (q_2), (q_3) must be false, and so
  −
    just one of the propositions q_1, q_2, q_3 must be true.
  −
  −
2.  If the proposition q is false, then every one of the
  −
    propositions (q_1), (q_2), (q_2) must be true, and so
  −
    each one of the propositions q_1, q_2, q_3 must be false.
  −
    In short, if q is false then all of the other q's are also.
  −
  −
Figures 1 and 2 illustrate this type of situation.
  −
  −
Figure 1 is the venn diagram of a 4-dimensional universe of discourse
  −
X = [q, q_1, q_2, q_3], conventionally named after the gang of four
  −
logical features that generate it.  Strictly speaking, X is made up
  −
of two layers, the position space X of abstract type %B%^4, and the
  −
proposition space X^ = (X -> %B%) of abstract type %B%^4 -> %B%,
  −
but it is commonly lawful enough to sign the signature of both
  −
spaces with the same X, and thus to give the power of attorney
  −
for the propositions to the so-indicted position space thereof.
  −
  −
Figure 1 also makes use of the convention whereby the regions
  −
or the subsets of the universe of discourse that correspond
  −
to the basic features q, q_1, q_2, q_3 are labelled with
  −
the parallel set of upper case letters Q, Q_1, Q_2, Q_3.
  −
  −
|                        o
  −
|                      / \
  −
|                      /  \
  −
|                    /    \
  −
|                    /      \
  −
|                  o        o
  −
|                  /%\      /%\
  −
|                /%%%\    /%%%\
  −
|                /%%%%%\  /%%%%%\
  −
|              /%%%%%%%\ /%%%%%%%\
  −
|              o%%%%%%%%%o%%%%%%%%%o
  −
|            / \%%%%%%%/ \%%%%%%%/ \
  −
|            /  \%%%%%/  \%%%%%/  \
  −
|          /    \%%%/    \%%%/    \
  −
|          /      \%/      \%/      \
  −
|        o        o        o        o
  −
|        / \      /%\      / \      / \
  −
|      /  \    /%%%\    /  \    /  \
  −
|      /    \  /%%%%%\  /    \  /    \
  −
|    /      \ /%%%%%%%\ /      \ /      \
  −
|    o        o%%%%%%%%%o        o        o
  −
|    ·\      / \%%%%%%%/ \      / \      /·
  −
|    · \    /  \%%%%%/  \    /  \    / ·
  −
|    ·  \  /    \%%%/    \  /    \  /  ·
  −
|    ·  \ /      \%/      \ /      \ /  ·
  −
|    ·    o        o        o        o    ·
  −
|    ·    ·\      / \      / \      /·    ·
  −
|    ·    · \    /  \    /  \    / ·    ·
  −
|    ·    ·  \  /    \  /    \  /  ·    ·
  −
|    · Q  ·  \ /      \ /      \ /  ·Q_3 ·
  −
|    ··········o        o        o··········
  −
|        ·    \      /%\      /    ·
  −
|        ·      \    /%%%\    /      ·
  −
|        ·      \  /%%%%%\  /      ·
  −
|        · Q_1    \ /%%%%%%%\ /    Q_2 ·
  −
|        ··········o%%%%%%%%%o··········
  −
|                    \%%%%%%%/
  −
|                    \%%%%%/
  −
|                      \%%%/
  −
|                      \%/
  −
|                        o
  −
|
  −
| Figure 1.  Genus Q and Species Q_1, Q_2, Q_3
  −
  −
Figure 2 is another form of venn diagram that one often uses,
  −
where one collapses the unindited cells and leaves only the
  −
models of the proposition in question.  Some people would
  −
call the transformation that changes from the first form
  −
to the next form an operation of "taking the quotient",
  −
but I tend to think of it as the "soap bubble picture"
  −
or more exactly the "wire & thread & soap film" model
  −
of the universe of discourse, where one pops out of
  −
consideration the sections of the soap film that
  −
stretch across the anti-model regions of space.
  −
  −
o-------------------------------------------------o
  −
|                                                |
  −
|  X                                              |
  −
|                                                |
  −
|                        o                        |
  −
|                      / \                      |
  −
|                      /  \                      |
  −
|                    /    \                    |
  −
|                    /      \                    |
  −
|                  /        \                  |
  −
|                  o    Q_1    o                  |
  −
|                / \        / \                |
  −
|                /  \      /  \                |
  −
|              /    \    /    \              |
  −
|              /      \  /      \              |
  −
|            /        \ /        \            |
  −
|            /          Q          \            |
  −
|          /            |            \          |
  −
|          /            |            \          |
  −
|        /      Q_2    |    Q_3      \        |
  −
|        /              |              \        |
  −
|      /                |                \      |
  −
|      o-----------------o-----------------o      |
  −
|                                                |
  −
|                                                |
  −
|                                                |
  −
o-------------------------------------------------o
  −
  −
Figure 2.  Genus Q and Species Q_1, Q_2, Q_3
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Example.  Partition, Genus & Species (cont.)
  −
  −
Last time we considered in general terms how the forms
  −
of complete partition and contingent partition operate
  −
to maintain mutually disjoint and possibly exhaustive
  −
categories of positions in a universe of discourse.
  −
  −
This time we contemplate another concrete Example of
  −
near minimal complexity, designed to demonstrate how
  −
the forms of partition and subsumption can interact
  −
in structuring a space of feature specifications.
  −
  −
In this Example, we describe a universe of discourse
  −
in terms of the following vocabulary of five features:
  −
  −
| L.  living_thing
  −
|
  −
| N.  non_living
  −
|
  −
| A.  animal
  −
|
  −
| V.  vegetable
  −
|
  −
| M.  mineral
  −
  −
Let us construe these features as being subject to four constraints:
  −
  −
| 1.  Everything is either a living_thing or non_living, but not both.
  −
|
  −
| 2.  Everything is either animal, vegetable, or mineral,
  −
|    but no two of these together.
  −
|
  −
| 3.  A living_thing is either animal or vegetable, but not both,
  −
|    and everything animal or vegetable is a living_thing.
  −
|
  −
| 4.  Everything mineral is non_living.
  −
  −
These notions and constructions are expressed in the Log file shown below:
  −
  −
Logical Input File
  −
o-------------------------------------------------o
  −
|                                                |
  −
|  ( living_thing , non_living )                |
  −
|                                                |
  −
|  (( animal ),( vegetable ),( mineral ))        |
  −
|                                                |
  −
|  ( living_thing ,( animal ),( vegetable ))    |
  −
|                                                |
  −
|  ( mineral ( non_living ))                    |
  −
|                                                |
  −
o-------------------------------------------------o
  −
  −
The cactus expression in this file is the expression
  −
of a "zeroth order theory" (ZOT), one that can be
  −
paraphrased in more ordinary language to say:
  −
  −
Translation
  −
o-------------------------------------------------o
  −
|                                                |
  −
|  living_thing  =/=  non_living                |
  −
|                                                |
  −
|  par : all -> {animal, vegetable, mineral}    |
  −
|                                                |
  −
|  par : living_thing -> {animal, vegetable}    |
  −
|                                                |
  −
|  mineral => non_living                        |
  −
|                                                |
  −
o-------------------------------------------------o
  −
  −
Here, "par : all -> {p, q, r}" is short for an assertion
  −
that the universe as a whole is partitioned into subsets
  −
that correspond to the features p, q, r.
  −
  −
Also, "par : q -> {r, s}" asserts that "Q partitions into R and S.
  −
  −
It is probably enough just to list the outputs of Model, Tenor, and Sense
  −
when run on the preceding Log file.  Using the same format and labeling as
  −
before, we may note that Model has, from 2^5 = 32 possible interpretations,
  −
made 11 evaluations, and found 3 models answering the generic descriptions
  −
that were imposed by the logical input file.
  −
  −
Model Outline
  −
o------------------------o
  −
| living_thing          |
  −
|  non_living -          |  1
  −
|  (non_living )        |
  −
|  mineral -            |  2
  −
|  (mineral )          |
  −
|    animal              |
  −
|    vegetable -        |  3
  −
|    (vegetable ) *    |  4 *
  −
|    (animal )          |
  −
|    vegetable *        |  5 *
  −
|    (vegetable ) -    |  6
  −
| (living_thing )        |
  −
|  non_living            |
  −
|  animal -            |  7
  −
|  (animal )            |
  −
|    vegetable -        |  8
  −
|    (vegetable )        |
  −
|    mineral *          |  9 *
  −
|    (mineral ) -      | 10
  −
|  (non_living ) -      | 11
  −
o------------------------o
  −
  −
Tenor Outline
  −
o------------------------o
  −
| living_thing          |
  −
|  (non_living )        |
  −
|  (mineral )          |
  −
|    animal              |
  −
|    (vegetable ) *    | <1>
  −
|    (animal )          |
  −
|    vegetable *        | <2>
  −
| (living_thing )        |
  −
|  non_living            |
  −
|  (animal )            |
  −
|    (vegetable )        |
  −
|    mineral *          | <3>
  −
o------------------------o
  −
  −
Sense Outline
  −
o------------------------o
  −
| living_thing          |
  −
|  animal                |
  −
|  vegetable            |
  −
| non_living            |
  −
|  mineral              |
  −
o------------------------o
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Example.  Molly's World
  −
  −
I think that we are finally ready to tackle a more respectable example.
  −
The Example known as "Molly's World" is borrowed from the literature on
  −
computational learning theory, adapted with a few changes from the example
  −
called "Molly’s Problem" in the paper "Learning With Hints" by Dana Angluin.
  −
By way of setting up the problem, I quote Angluin's motivational description:
  −
  −
| Imagine that you have become acquainted with an alien named Molly from the
  −
| planet Ornot, who is currently employed in a day-care center.  She is quite
  −
| good at propositional logic, but a bit weak on knowledge of Earth.  So you
  −
| decide to formulate the beginnings of a propositional theory to help her
  −
| label things in her immediate environment.
  −
|
  −
| Angluin, Dana, "Learning With Hints", pages 167-181, in:
  −
| David Haussler & Leonard Pitt (eds.), 'Proceedings of the 1988 Workshop
  −
| on Computational Learning Theory', Morgan Kaufmann, San Mateo, CA, 1989.
  −
  −
The purpose of this quaint pretext is, of course, to make sure that the
  −
reader appreciates the constraints of the problem:  that no extra savvy
  −
is fair, all facts must be presumed or deduced on the immediate premises.
  −
  −
My use of this example is not directly relevant to the purposes of the
  −
discussion from which it is taken, so I simply give my version of it
  −
without comment on those issues.
  −
  −
Here is my rendition of the initial knowledge base delimiting Molly’s World:
  −
  −
Logical Input File:  Molly.Log
  −
o---------------------------------------------------------------------o
  −
|                                                                    |
  −
| ( object ,( toy ),( vehicle ))                                      |
  −
| (( small_size ),( medium_size ),( large_size ))                    |
  −
| (( two_wheels ),( three_wheels ),( four_wheels ))                  |
  −
| (( no_seat ),( one_seat ),( few_seats ),( many_seats ))            |
  −
| ( object ,( scooter ),( bike ),( trike ),( car ),( bus ),( wagon )) |
  −
| ( two_wheels    no_seat            ,( scooter ))                    |
  −
| ( two_wheels    one_seat    pedals ,( bike ))                      |
  −
| ( three_wheels  one_seat    pedals ,( trike ))                      |
  −
| ( four_wheels  few_seats  doors  ,( car ))                        |
  −
| ( four_wheels  many_seats  doors  ,( bus ))                        |
  −
| ( four_wheels  no_seat    handle ,( wagon ))                      |
  −
| ( scooter          ( toy  small_size ))                            |
  −
| ( wagon            ( toy  small_size ))                            |
  −
| ( trike            ( toy  small_size ))                            |
  −
| ( bike  small_size  ( toy ))                                        |
  −
| ( bike  medium_size ( vehicle ))                                    |
  −
| ( bike  large_size  )                                              |
  −
| ( car              ( vehicle  large_size ))                        |
  −
| ( bus              ( vehicle  large_size ))                        |
  −
| ( toy              ( object ))                                    |
  −
| ( vehicle          ( object ))                                    |
  −
|                                                                    |
  −
o---------------------------------------------------------------------o
  −
  −
All of the logical forms that are used in the preceding Log file
  −
will probably be familiar from earlier discussions.  The purpose
  −
of one or two constructions may, however, be a little obscure,
  −
so I will insert a few words of additional explanation here:
  −
  −
The rule "( bike large_size )", for example, merely
  −
says that nothing can be both a bike and large_size.
  −
  −
The rule "( three_wheels one_seat pedals ,( trike ))" says that anything
  −
with all the features of three_wheels, one_seat, and pedals is excluded
  −
from being anything but a trike.  In short, anything with just those
  −
three features is equivalent to a trike.
  −
  −
Recall that the form "( p , q )" may be interpreted to assert either
  −
the exclusive disjunction or the logical inequivalence of p and q.
  −
  −
The rules have been stated in this particular way simply
  −
to imitate the style of rules in the reference example.
  −
  −
This last point does bring up an important issue, the question
  −
of "rhetorical" differences in expression and their potential
  −
impact on the "pragmatics" of computation.  Unfortunately,
  −
I will have to abbreviate my discussion of this topic for
  −
now, and only mention in passing the following facts.
  −
  −
Logically equivalent expressions, even though they must lead
  −
to logically equivalent normal forms, may have very different
  −
characteristics when it comes to the efficiency of processing.
  −
  −
For instance, consider the following four forms:
  −
  −
| 1.  (( p , q ))
  −
|
  −
| 2.  ( p ,( q ))
  −
|
  −
| 3.  (( p ), q )
  −
|
  −
| 4.  (( p , q ))
  −
  −
All of these are equally succinct ways of maintaining that
  −
p is logically equivalent to q, yet each can have different
  −
effects on the route that Model takes to arrive at an answer.
  −
Apparently, some equalities are more equal than others.
  −
  −
These effects occur partly because the algorithm chooses to make cases
  −
of variables on a basis of leftmost shallowest first, but their impact
  −
can be complicated by the interactions that each expression has with
  −
the context that it occupies.  The main lesson to take away from all
  −
of this, at least, for the time being, is that it is probably better
  −
not to bother too much about these problems, but just to experiment
  −
with different ways of expressing equivalent pieces of information
  −
until you get a sense of what works best in various situations.
  −
  −
I think that you will be happy to see only the
  −
ultimate Sense of Molly’s World, so here it is:
  −
  −
Sense Outline:  Molly.Sen
  −
o------------------------o
  −
| object                |
  −
|  two_wheels            |
  −
|  no_seat              |
  −
|    scooter            |
  −
|    toy                |
  −
|      small_size        |
  −
|  one_seat            |
  −
|    pedals              |
  −
|    bike              |
  −
|      small_size        |
  −
|      toy              |
  −
|      medium_size      |
  −
|      vehicle          |
  −
|  three_wheels          |
  −
|  one_seat            |
  −
|    pedals              |
  −
|    trike              |
  −
|      toy              |
  −
|      small_size      |
  −
|  four_wheels          |
  −
|  few_seats            |
  −
|    doors              |
  −
|    car                |
  −
|      vehicle          |
  −
|      large_size      |
  −
|  many_seats          |
  −
|    doors              |
  −
|    bus                |
  −
|      vehicle          |
  −
|      large_size      |
  −
|  no_seat              |
  −
|    handle              |
  −
|    wagon              |
  −
|      toy              |
  −
|      small_size      |
  −
o------------------------o
  −
  −
This outline is not the Sense of the unconstrained Log file,
  −
but the result of running Model with a query on the single
  −
feature "object".  Using this focus helps the Modeler
  −
to make more relevant Sense of Molly’s World.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
DM = Douglas McDavid
  −
  −
DM: This, again, is an example of how real issues of ontology are
  −
    so often trivialized at the expense of technicalities.  I just
  −
    had a burger, some fries, and a Coke.  I would say all that was
  −
    non-living and non-mineral.  A virus, I believe is non-animal,
  −
    non-vegetable, but living (and non-mineral).  Teeth, shells,
  −
    and bones are virtually pure mineral, but living.  These are
  −
    the kinds of issues that are truly "ontological," in my
  −
    opinion.  You are not the only one to push them into
  −
    the background as of lesser importance.  See the
  −
    discussion of "18-wheelers" in John Sowa's book.
  −
  −
it's not my example, and from you say, it's not your example either.
  −
copied it out of a book or a paper somewhere, too long ago to remember.
  −
i am assuming that the author or tardition from which it came must have
  −
seen some kind of sense in it.  tell you what, write out your own theory
  −
of "what is" in so many variables, more or less, publish it in a book or
  −
a paper, and then folks will tell you that they dispute each and every
  −
thing that you have just said, and it won't really matter all that much
  −
how complex it is or how subtle you are.  that has been the way of all
  −
ontology for about as long as anybody can remember or even read about.
  −
me?  i don't have sufficient arrogance to be an ontologist, and you
  −
know that's saying a lot, as i can't even imagine a way to convince
  −
myself that i believe i know "what is", really and truly for sure
  −
like some folks just seem to do.  so i am working to improve our
  −
technical ability to do logic, which is mostly a job of shooting
  −
down the more serious delusions that we often get ourselves into.
  −
can i be of any use to ontologists?  i dunno.  i guess it depends
  −
on how badly they are attached to some of the delusions of knowing
  −
what their "common" sense tells them everybody ought to already know,
  −
but that every attempt to check that out in detail tells them it just
  −
ain't so.  a problem for which denial was just begging to be invented,
  −
and so it was.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Example.  Molly's World (cont.)
  −
  −
In preparation for a contingently possible future discussion,
  −
I need to attach a few parting thoughts to the case workup
  −
of Molly's World that may not seem terribly relevant to
  −
the present setting, but whose pertinence I hope will
  −
become clearer in time.
  −
  −
The logical paradigm from which this Example was derived is that
  −
of "Zeroth Order Horn Clause Theories".  The clauses at issue
  −
in these theories are allowed to be of just three kinds:
  −
  −
| 1.  p & q & r & ... => z
  −
|
  −
| 2.  z
  −
|
  −
| 3.  ~[p & q & r & ...]
  −
  −
Here, the proposition letters "p", "q", "r", ..., "z"
  −
are restricted to being single positive features, not
  −
themselves negated or otherwise complex expressions.
  −
  −
In the Cactus Language or Existential Graph syntax
  −
these forms would take on the following appearances:
  −
  −
| 1.  ( p q r ... ( z ))
  −
|
  −
| 2.    z
  −
|
  −
| 3.  ( p q r ... )
  −
  −
The style of deduction in Horn clause logics is essentially
  −
proof-theoretic in character, with the main burden of proof
  −
falling on implication relations ("=>") and on "projective"
  −
forms of inference, that is, information-losing inferences
  −
like modus ponens and resolution.  Cf. [Llo], [MaW].
  −
  −
In contrast, the method used here is substantially model-theoretic,
  −
the stress being to start from more general forms of expression for
  −
laying out facts (for example, distinctions, equations, partitions)
  −
and to work toward results that maintain logical equivalence with
  −
their origins.
  −
  −
What all of this has to do with the output above is this:
  −
>From the perspective that is adopted in the present work,
  −
almost any theory, for example, the one that is founded
  −
on the postulates of Molly's World, will have far more
  −
models than the implicational and inferential mode of
  −
reasoning is designed to discover.  We will be forced
  −
to confront them, however, if we try to run Model on
  −
a large set of implications.
  −
  −
The typical Horn clause interpreter gets around this
  −
difficulty only by a stratagem that takes clauses to
  −
mean something other than what they say, that is, by
  −
distorting the principles of semantics in practice.
  −
Our Model, on the other hand, has no such finesse.
  −
  −
This explains why it was necessary to impose the
  −
prerequisite "object" constraint on the Log file
  −
for Molly's World.  It supplied no more than what
  −
we usually take for granted, in order to obtain
  −
a set of models that we would normally think of
  −
as being the intended import of the definitions.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Example.  Jets & Sharks
  −
  −
The propositional calculus based on the boundary operator, that is,
  −
the multigrade logical connective of the form "( , , , ... )" can be
  −
interpreted in a way that resembles the logic of activation states and
  −
competition constraints in certain neural network models.  One way to do
  −
this is by interpreting the blank or unmarked state as the resting state
  −
of a neural pool, the bound or marked state as its activated state, and
  −
by representing a mutually inhibitory pool of neurons p, q, r by means
  −
of the expression "( p , q , r )".  To illustrate this possibility,
  −
I transcribe into cactus language expressions a notorious example
  −
from the "parallel distributed processing" (PDP) paradigm [McR]
  −
and work through two of the associated exercises as portrayed
  −
in this format.
  −
  −
Logical Input File:  JAS  =  ZOT(Jets And Sharks)
  −
o----------------------------------------------------------------o
  −
|                                                                |
  −
|  (( art    ),( al  ),( sam  ),( clyde ),( mike  ),            |
  −
|  ( jim    ),( greg ),( john ),( doug  ),( lance ),            |
  −
|  ( george ),( pete ),( fred ),( gene  ),( ralph ),            |
  −
|  ( phil  ),( ike  ),( nick ),( don  ),( ned  ),( karl ),  |
  −
|  ( ken    ),( earl ),( rick ),( ol    ),( neal  ),( dave ))  |
  −
|                                                                |
  −
|  ( jets , sharks )                                            |
  −
|                                                                |
  −
|  ( jets ,                                                      |
  −
|    ( art    ),( al  ),( sam  ),( clyde ),( mike  ),          |
  −
|    ( jim    ),( greg ),( john ),( doug  ),( lance ),          |
  −
|    ( george ),( pete ),( fred ),( gene  ),( ralph ))          |
  −
|                                                                |
  −
|  ( sharks ,                                                    |
  −
|    ( phil ),( ike  ),( nick ),( don ),( ned  ),( karl ),      |
  −
|    ( ken  ),( earl ),( rick ),( ol  ),( neal ),( dave ))      |
  −
|                                                                |
  −
|  (( 20's ),( 30's ),( 40's ))                                  |
  −
|                                                                |
  −
|  ( 20's ,                                                      |
  −
|    ( sam    ),( jim  ),( greg ),( john ),( lance ),            |
  −
|    ( george ),( pete ),( fred ),( gene ),( ken  ))            |
  −
|                                                                |
  −
|  ( 30's ,                                                      |
  −
|    ( al  ),( mike ),( doug ),( ralph ),                      |
  −
|    ( phil ),( ike  ),( nick ),( don  ),                      |
  −
|    ( ned  ),( rick ),( ol  ),( neal  ),( dave ))              |
  −
|                                                                |
  −
|  ( 40's ,                                                      |
  −
|    ( art ),( clyde ),( karl ),( earl ))                        |
  −
|                                                                |
  −
|  (( junior_high ),( high_school ),( college ))                |
  −
|                                                                |
  −
|  ( junior_high ,                                              |
  −
|    ( art  ),( al    ),( clyde  ),( mike  ),( jim ),            |
  −
|    ( john ),( lance ),( george ),( ralph ),( ike ))            |
  −
|                                                                |
  −
|  ( high_school ,                                              |
  −
|    ( greg ),( doug ),( pete ),( fred ),( nick ),              |
  −
|    ( karl ),( ken  ),( earl ),( rick ),( neal ),( dave ))      |
  −
|                                                                |
  −
|  ( college ,                                                  |
  −
|    ( sam ),( gene ),( phil ),( don ),( ned ),( ol ))          |
  −
|                                                                |
  −
|  (( single ),( married ),( divorced ))                        |
  −
|                                                                |
  −
|  ( single ,                                                    |
  −
|    ( art  ),( sam  ),( clyde ),( mike ),                      |
  −
|    ( doug  ),( pete ),( fred  ),( gene ),                      |
  −
|    ( ralph ),( ike  ),( nick  ),( ken  ),( neal ))            |
  −
|                                                                |
  −
|  ( married ,                                                  |
  −
|    ( al  ),( greg ),( john ),( lance ),( phil ),              |
  −
|    ( don ),( ned  ),( karl ),( earl  ),( ol  ))              |
  −
|                                                                |
  −
|  ( divorced ,                                                  |
  −
|    ( jim ),( george ),( rick ),( dave ))                      |
  −
|                                                                |
  −
|  (( bookie ),( burglar ),( pusher ))                          |
  −
|                                                                |
  −
|  ( bookie ,                                                    |
  −
|    ( sam  ),( clyde ),( mike ),( doug ),                      |
  −
|    ( pete ),( ike  ),( ned  ),( karl ),( neal ))              |
  −
|                                                                |
  −
|  ( burglar ,                                                  |
  −
|    ( al    ),( jim ),( john ),( lance ),                      |
  −
|    ( george ),( don ),( ken  ),( earl  ),( rick ))            |
  −
|                                                                |
  −
|  ( pusher ,                                                    |
  −
|    ( art  ),( greg ),( fred ),( gene ),                      |
  −
|    ( ralph ),( phil ),( nick ),( ol  ),( dave ))              |
  −
|                                                                |
  −
o----------------------------------------------------------------o
  −
  −
We now apply Study to the proposition that
  −
defines the Jets and Sharks knowledge base,
  −
that is to say, the knowledge that we are
  −
given about the Jets and Sharks, not the
  −
knowledge that the Jets and Sharks have.
  −
  −
With a query on the name "ken" we obtain the following
  −
output, giving all of the features associated with Ken:
  −
  −
Sense Outline:  JAS & Ken
  −
o---------------------------------------o
  −
| ken                                  |
  −
|  sharks                              |
  −
|  20's                                |
  −
|    high_school                        |
  −
|    single                            |
  −
|      burglar                          |
  −
o---------------------------------------o
  −
  −
With a query on the two features "college" and "sharks"
  −
we obtain the following outline of all of the features
  −
that satisfy these constraints:
  −
  −
Sense Outline:  JAS & College & Sharks
  −
o---------------------------------------o
  −
| college                              |
  −
|  sharks                              |
  −
|  30's                                |
  −
|    married                            |
  −
|    bookie                            |
  −
|      ned                              |
  −
|    burglar                          |
  −
|      don                              |
  −
|    pusher                            |
  −
|      phil                            |
  −
|      ol                              |
  −
o---------------------------------------o
  −
  −
>From this we discover that all college Sharks
  −
are 30-something and married.  Furthermore,
  −
we have a complete listing of their names
  −
broken down by occupation, as I have no
  −
doubt that all of them will be in time.
  −
  −
| Reference:
  −
|
  −
| McClelland, James L. & Rumelhart, David E.,
  −
|'Explorations in Parallel Distributed Processing:
  −
| A Handbook of Models, Programs, and Exercises',
  −
| MIT Press, Cambridge, MA, 1988.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
One of the issues that my pondering weak and weary over
  −
has caused me to burn not a few barrels of midnight oil
  −
over the past elventeen years or so is the relationship
  −
among divers and sundry "styles of inference", by which
  −
I mean particular choices of inference paradigms, rules,
  −
or schemata.  The chief breakpoint seems to lie between
  −
information-losing and information-maintaining modes of
  −
inference, also called "implicational" and "equational",
  −
or "projective" and "preservative" brands, respectively.
  −
  −
Since it appears to be mostly the implicational and projective
  −
styles of inference that are more familiar to folks hereabouts,
  −
I will start off this subdiscussion by introducing a number of
  −
risibly simple but reasonably manageable examples of the other
  −
brand of inference, treated as equational reasoning approaches
  −
to problems about satisfying "zeroth order constraints" (ZOC's).
  −
  −
Applications of a Propositional Calculator:
  −
Constraint Satisfaction Problems.
  −
Jon Awbrey, April 24, 1995.
  −
  −
The Four Houses Puzzle
  −
  −
Constructed on the model of the "Five Houses Puzzle" in [VaH, 132-136].
  −
  −
Problem Statement.  Four people with different nationalities live in the
  −
first four houses of a street.  They practice four distinct professions,
  −
and each of them has a favorite animal, all of them different.  The four
  −
houses are painted different colors.  The following facts are known:
  −
  −
|  1.  The Englander lives in the first house on the left.
  −
|  2.  The doctor lives in the second house.
  −
|  3.  The third house is painted red.
  −
|  4.  The zebra is a favorite in the fourth house.
  −
|  5.  The person in the first house has a dog.
  −
|  6.  The Japanese lives in the third house.
  −
|  7.  The red house is on the left of the yellow one.
  −
|  8.  They breed snails in the house to right of the doctor.
  −
|  9.  The Englander lives next to the green house.
  −
| 10.  The fox is in the house next to to the diplomat.
  −
| 11.  The Spaniard likes zebras.
  −
| 12.  The Japanese is a painter.
  −
| 13.  The Italian lives in the green house.
  −
| 14.  The violinist lives in the yellow house.
  −
| 15.  The dog is a pet in the blue house.
  −
| 16.  The doctor keeps a fox.
  −
  −
The problem is to find all of the assignments of
  −
features to houses that satisfy these requirements.
  −
  −
Logical Input File:  House^4.Log
  −
o---------------------------------------------------------------------o
  −
|                                                                    |
  −
|  eng_1  doc_2  red_3  zeb_4  dog_1  jap_3                          |
  −
|                                                                    |
  −
|  (( red_1  yel_2 ),( red_2  yel_3 ),( red_3  yel_4 ))              |
  −
|  (( doc_1  sna_2 ),( doc_2  sna_3 ),( doc_3  sna_4 ))              |
  −
|                                                                    |
  −
|  (( eng_1  gre_2 ),                                                |
  −
|  ( eng_2  gre_3 ),( eng_2  gre_1 ),                                |
  −
|  ( eng_3  gre_4 ),( eng_3  gre_2 ),                                |
  −
|                    ( eng_4  gre_3 ))                                |
  −
|                                                                    |
  −
|  (( dip_1  fox_2 ),                                                |
  −
|  ( dip_2  fox_3 ),( dip_2  fox_1 ),                                |
  −
|  ( dip_3  fox_4 ),( dip_3  fox_2 ),                                |
  −
|                    ( dip_4  fox_3 ))                                |
  −
|                                                                    |
  −
|  (( spa_1 zeb_1 ),( spa_2 zeb_2 ),( spa_3 zeb_3 ),( spa_4 zeb_4 ))  |
  −
|  (( jap_1 pai_1 ),( jap_2 pai_2 ),( jap_3 pai_3 ),( jap_4 pai_4 ))  |
  −
|  (( ita_1 gre_1 ),( ita_2 gre_2 ),( ita_3 gre_3 ),( ita_4 gre_4 ))  |
  −
|                                                                    |
  −
|  (( yel_1 vio_1 ),( yel_2 vio_2 ),( yel_3 vio_3 ),( yel_4 vio_4 ))  |
  −
|  (( blu_1 dog_1 ),( blu_2 dog_2 ),( blu_3 dog_3 ),( blu_4 dog_4 ))  |
  −
|                                                                    |
  −
|  (( doc_1 fox_1 ),( doc_2 fox_2 ),( doc_3 fox_3 ),( doc_4 fox_4 ))  |
  −
|                                                                    |
  −
|  ((                                                                |
  −
|                                                                    |
  −
|  (( eng_1 ),( eng_2 ),( eng_3 ),( eng_4 ))                          |
  −
|  (( spa_1 ),( spa_2 ),( spa_3 ),( spa_4 ))                          |
  −
|  (( jap_1 ),( jap_2 ),( jap_3 ),( jap_4 ))                          |
  −
|  (( ita_1 ),( ita_2 ),( ita_3 ),( ita_4 ))                          |
  −
|                                                                    |
  −
|  (( eng_1 ),( spa_1 ),( jap_1 ),( ita_1 ))                          |
  −
|  (( eng_2 ),( spa_2 ),( jap_2 ),( ita_2 ))                          |
  −
|  (( eng_3 ),( spa_3 ),( jap_3 ),( ita_3 ))                          |
  −
|  (( eng_4 ),( spa_4 ),( jap_4 ),( ita_4 ))                          |
  −
|                                                                    |
  −
|  (( gre_1 ),( gre_2 ),( gre_3 ),( gre_4 ))                          |
  −
|  (( red_1 ),( red_2 ),( red_3 ),( red_4 ))                          |
  −
|  (( yel_1 ),( yel_2 ),( yel_3 ),( yel_4 ))                          |
  −
|  (( blu_1 ),( blu_2 ),( blu_3 ),( blu_4 ))                          |
  −
|                                                                    |
  −
|  (( gre_1 ),( red_1 ),( yel_1 ),( blu_1 ))                          |
  −
|  (( gre_2 ),( red_2 ),( yel_2 ),( blu_2 ))                          |
  −
|  (( gre_3 ),( red_3 ),( yel_3 ),( blu_3 ))                          |
  −
|  (( gre_4 ),( red_4 ),( yel_4 ),( blu_4 ))                          |
  −
|                                                                    |
  −
|  (( pai_1 ),( pai_2 ),( pai_3 ),( pai_4 ))                          |
  −
|  (( dip_1 ),( dip_2 ),( dip_3 ),( dip_4 ))                          |
  −
|  (( vio_1 ),( vio_2 ),( vio_3 ),( vio_4 ))                          |
  −
|  (( doc_1 ),( doc_2 ),( doc_3 ),( doc_4 ))                          |
  −
|                                                                    |
  −
|  (( pai_1 ),( dip_1 ),( vio_1 ),( doc_1 ))                          |
  −
|  (( pai_2 ),( dip_2 ),( vio_2 ),( doc_2 ))                          |
  −
|  (( pai_3 ),( dip_3 ),( vio_3 ),( doc_3 ))                          |
  −
|  (( pai_4 ),( dip_4 ),( vio_4 ),( doc_4 ))                          |
  −
|                                                                    |
  −
|  (( dog_1 ),( dog_2 ),( dog_3 ),( dog_4 ))                          |
  −
|  (( zeb_1 ),( zeb_2 ),( zeb_3 ),( zeb_4 ))                          |
  −
|  (( fox_1 ),( fox_2 ),( fox_3 ),( fox_4 ))                          |
  −
|  (( sna_1 ),( sna_2 ),( sna_3 ),( sna_4 ))                          |
  −
|                                                                    |
  −
|  (( dog_1 ),( zeb_1 ),( fox_1 ),( sna_1 ))                          |
  −
|  (( dog_2 ),( zeb_2 ),( fox_2 ),( sna_2 ))                          |
  −
|  (( dog_3 ),( zeb_3 ),( fox_3 ),( sna_3 ))                          |
  −
|  (( dog_4 ),( zeb_4 ),( fox_4 ),( sna_4 ))                          |
  −
|                                                                    |
  −
|  ))                                                                |
  −
|                                                                    |
  −
o---------------------------------------------------------------------o
  −
  −
Sense Outline:  House^4.Sen
  −
o-----------------------------o
  −
| eng_1                      |
  −
|  doc_2                      |
  −
|  red_3                    |
  −
|    zeb_4                    |
  −
|    dog_1                  |
  −
|      jap_3                  |
  −
|      yel_4                |
  −
|        sna_3                |
  −
|        gre_2              |
  −
|          dip_1              |
  −
|          fox_2            |
  −
|            spa_4            |
  −
|            pai_3          |
  −
|              ita_2          |
  −
|              vio_4        |
  −
|                blu_1        |
  −
o-----------------------------o
  −
  −
Table 1.  Solution to the Four Houses Puzzle
  −
o------------o------------o------------o------------o------------o
  −
|            | House 1    | House 2    | House 3    | House 4    |
  −
o------------o------------o------------o------------o------------o
  −
| Nation    | England    | Italy      | Japan      | Spain      |
  −
| Color      | blue      | green      | red        | yellow    |
  −
| Profession | diplomat  | doctor    | painter    | violinist  |
  −
| Animal    | dog        | fox        | snails    | zebra      |
  −
o------------o------------o------------o------------o------------o
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
First off, I do not trivialize the "real issues of ontology", indeed,
  −
it is precisely my estimate of the non-trivial difficulty of this task,
  −
of formulating the types of "generic ontology" that we propose to do here,
  −
that forces me to choose and to point out the inescapability of the approach
  −
that I am currently taking, which is to enter on the necessary preliminary of
  −
building up the logical tools that we need to tackle the ontology task proper.
  −
And I would say, to the contrary, that it is those who think we can arrive at
  −
a working general ontology by sitting on the porch shooting the breeze about
  −
"what it is" until the cows come home -- that is, the method for which it
  −
has become cliche to indict the Ancient Greeks, though, if truth be told,
  −
we'd have to look to the pre-socratics and the pre-stoics to find a good
  −
match for the kinds of revelation that are common hereabouts -- I would
  −
say that it's those folks who trivialize the "real issues of ontology".
  −
  −
A person, living in our times, who is serious about knowing the being of things,
  −
really only has one choice -- to pick what tiny domain of things he or she just
  −
has to know about the most, thence to hie away to the adept gurus of the matter
  −
in question, forgeting the rest, cause "general ontology" is a no-go these days.
  −
It is presently in a state like astronomy before telescopes, and that means not
  −
entirely able to discern itself from astrology and other psychically projective
  −
exercises of wishful and dreadful thinking like that.
  −
  −
So I am busy grinding lenses ...
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
DM = Douglas McDavid
  −
  −
DM: Thanks for both the original and additional response.  I'm not trying to
  −
    single you out, as I have been picking  on various postings in a similar
  −
    manner ever since I started contributing to this discussion.  I agree with
  −
    you that the task of this working group is non-trivially difficult.  In fact,
  −
    I believe we are still a long way from a clear and useful agreement about what
  −
    constitutes "upper" ontology, and what it would mean to standardize it.  However,
  −
    I don't agree that the only place to make progress is in tiny domains of things.
  −
    I've contributed the thought that a fundamental, upper-level concept is the
  −
    concept of system, and that that would be a good place to begin.  And I'll
  −
    never be able to refrain from evaluating the content as well as the form
  −
    of any examples presented for consideration here.  Probably should
  −
    accompany these comments with a ;-)
  −
  −
There will never be a standard universal ontology
  −
of the absolute essential impertubable monolithic
  −
variety that some people still dream of in their
  −
fantasies of spectating on and speculating about
  −
a pre-relativistically non-participatory universe
  −
from their singular but isolated gods'eye'views.
  −
The bells tolled for that one many years ago,
  −
but some of the more blithe of the blissful
  −
islanders have just not gotten the news yet.
  −
  −
But there is still a lot to do that would be useful
  −
under the banner of a "standard upper ontology",
  −
if only we stay loose in our interpretation
  −
of what that implies in practical terms.
  −
  −
One likely approach to the problem would be to take
  −
a hint from the afore-allusioned history of physics --
  −
to inquire for whom, else, the bell tolls -- and to
  −
see if there are any bits of wisdom from that prior
  −
round of collective experience that can be adapted
  −
by dint of analogy to our present predicament.
  −
I happen to think that there are.
  −
  −
And there the answer was, not to try and force a return,
  −
though lord knows they all gave it their very best shot,
  −
to an absolute and imperturbable framework of existence,
  −
but to see the reciprocal participant relation that all
  −
partakers have to the constitution of that framing, yes,
  −
even unto those who would abdictators and abstainees be.
  −
  −
But what does that imply about some shred of a standard?
  −
It means that we are better off seeking, not a standard,
  −
one-size-fits-all ontology, but more standard resources
  −
for trying to interrelate diverse points of view and to
  −
transform the data that's gathered from one perspective
  −
in ways that it can most appropriately be compared with
  −
the data that is gathered from other standpoints on the
  −
splendorous observational scenes and theorematic stages.
  −
  −
That is what I am working on.
  −
And it hasn't been merely
  −
for a couple of years.
  −
  −
As to this bit:
  −
  −
o-------------------------------------------------o
  −
|                                                |
  −
|  ( living_thing , non_living )                |
  −
|                                                |
  −
|  (( animal ),( vegetable ),( mineral ))        |
  −
|                                                |
  −
|  ( living_thing ,( animal ),( vegetable ))    |
  −
|                                                |
  −
|  ( mineral ( non_living ))                    |
  −
|                                                |
  −
o-------------------------------------------------o
  −
  −
My 5-dimensional Example, that I borrowed from some indifferent source
  −
of what is commonly recognized as "common sense" -- and I think rather
  −
obviously designed more for the classification of pre-modern species
  −
of whole critters and pure matters of natural substance than the
  −
motley mixture of un/natural and in/organic conglouterites that
  −
we find served up on the menu of modernity -- was not intended
  −
even so much as a toy ontology, but simply as an expository
  −
example, concocted for the sake of illustrating the sorts
  −
of logical interaction that occur among four different
  −
patterns of logical constraint, all of which types
  −
arise all the time no matter what the domain, and
  −
which I believe that my novel forms of expression,
  −
syntactically speaking, express quite succinctly,
  −
especially when you contemplate the complexities
  −
of the computation that may flow and must follow
  −
from even these meagre propositional expressions.
  −
  −
Yes, systems -- but -- even here usage differs in significant ways.
  −
I have spent ten years now trying to integrate my earlier efforts
  −
under an explicit systems banner, but even within the bounds of
  −
a systems engineering programme at one site there is a wide
  −
semantic dispersion that issues from this word "system".
  −
I am committed, and in writing, to taking what we so
  −
glibly and prospectively call "intelligent systems"
  −
seriously as dynamical systems.  That has many
  −
consequences, and I have to pick and choose
  −
which of those I may be suited to follow.
  −
  −
But that is too long a story for now ...
  −
  −
";-)"?
  −
  −
Somehow that has always looked like
  −
the Chesshire Cat's grin to me ...
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
By way of catering to popular demand, I have decided to
  −
render this symposium a bit more à la carte, and thus to
  −
serve up as faster food than heretofore a choice selection
  −
of the more sumptuous bits that I have in my logical larder,
  −
not yet full fare, by any means, but a sample of what might
  −
one day approach to being an abundantly moveable feast of
  −
ontological contents and general metaphysical delights.
  −
I'll leave it to you to name your poison, as it were.
  −
  −
Applications of a Propositional Calculator:
  −
Constraint Satisfaction Problems.
  −
Jon Awbrey, April 24, 1995.
  −
  −
Fabric Knowledge Base
  −
Based on the example in [MaW, pages 8-16].
  −
  −
Logical Input File:  Fab.Log
  −
o---------------------------------------------------------------------o
  −
|                                                                    |
  −
| (has_floats , plain_weave )                                        |
  −
| (has_floats ,(twill_weave ),(satin_weave ))                        |
  −
|                                                                    |
  −
| (plain_weave ,                                                      |
  −
|  (plain_weave  one_color ),                                        |
  −
|  (color_groups  ),                                                  |
  −
|  (grouped_warps ),                                                  |
  −
|  (some_thicker  ),                                                  |
  −
|  (crossed_warps ),                                                  |
  −
|  (loop_threads  ),                                                  |
  −
|  (plain_weave  flannel ))                                          |
  −
|                                                                    |
  −
| (plain_weave  one_color  cotton  balanced  smooth  ,(percale ))    |
  −
| (plain_weave  one_color  cotton            sheer  ,(organdy ))    |
  −
| (plain_weave  one_color  silk              sheer  ,(organza ))    |
  −
|                                                                    |
  −
| (plain_weave  color_groups  warp_stripe  fill_stripe ,(plaid  ))  |
  −
| (plaid        equal_stripe                          ,(gingham ))  |
  −
|                                                                    |
  −
| (plain_weave  grouped_warps ,(basket_weave ))                      |
  −
|                                                                    |
  −
| (basket_weave  typed ,                                              |
  −
|  (type_2_to_1 ),                                                    |
  −
|  (type_2_to_2 ),                                                    |
  −
|  (type_4_to_4 ))                                                    |
  −
|                                                                    |
  −
| (basket_weave  typed  type_2_to_1  thicker_fill  ,(oxford      )) |
  −
| (basket_weave  typed (type_2_to_2 ,                                |
  −
|                      type_4_to_4 ) same_thickness ,(monks_cloth )) |
  −
| (basket_weave (typed )              rough  open    ,(hopsacking  )) |
  −
|                                                                    |
  −
| (typed (basket_weave ))                                            |
  −
|                                                                    |
  −
| (basket_weave ,(oxford ),(monks_cloth ),(hopsacking ))              |
  −
|                                                                    |
  −
| (plain_weave  some_thicker ,(ribbed_weave ))                      |
  −
|                                                                    |
  −
| (ribbed_weave ,(small_rib ),(medium_rib ),(heavy_rib ))            |
  −
| (ribbed_weave ,(flat_rib  ),(round_rib ))                          |
  −
|                                                                    |
  −
| (ribbed_weave  thicker_fill          ,(cross_ribbed ))              |
  −
| (cross_ribbed  small_rib  flat_rib  ,(faille      ))              |
  −
| (cross_ribbed  small_rib  round_rib ,(grosgrain    ))              |
  −
| (cross_ribbed  medium_rib  round_rib ,(bengaline    ))              |
  −
| (cross_ribbed  heavy_rib  round_rib ,(ottoman      ))              |
  −
|                                                                    |
  −
| (cross_ribbed ,(faille ),(grosgrain ),(bengaline ),(ottoman ))      |
  −
|                                                                    |
  −
| (plain_weave  crossed_warps ,(leno_weave  ))                        |
  −
| (leno_weave  open          ,(marquisette ))                        |
  −
| (plain_weave  loop_threads  ,(pile_weave ))                        |
  −
|                                                                    |
  −
| (pile_weave ,(fill_pile ),(warp_pile ))                            |
  −
| (pile_weave ,(cut ),(uncut ))                                      |
  −
|                                                                    |
  −
| (pile_weave  warp_pile  cut                  ,(velvet    ))        |
  −
| (pile_weave  fill_pile  cut    aligned_pile  ,(corduroy  ))        |
  −
| (pile_weave  fill_pile  cut    staggered_pile ,(velveteen ))        |
  −
| (pile_weave  fill_pile  uncut  reversible    ,(terry    ))        |
  −
|                                                                    |
  −
| (pile_weave  fill_pile  cut ( (aligned_pile , staggered_pile ) ))  |
  −
|                                                                    |
  −
| (pile_weave ,(velvet ),(corduroy ),(velveteen ),(terry ))          |
  −
|                                                                    |
  −
| (plain_weave ,                                                      |
  −
|  (percale    ),(organdy    ),(organza    ),(plaid  ),            |
  −
|  (oxford    ),(monks_cloth ),(hopsacking ),                        |
  −
|  (faille    ),(grosgrain  ),(bengaline  ),(ottoman ),            |
  −
|  (leno_weave ),(pile_weave  ),(plain_weave  flannel ))            |
  −
|                                                                    |
  −
| (twill_weave ,                                                      |
  −
|  (warp_faced ),                                                    |
  −
|  (filling_faced ),                                                  |
  −
|  (even_twill ),                                                    |
  −
|  (twill_weave  flannel ))                                          |
  −
|                                                                    |
  −
| (twill_weave  warp_faced  colored_warp  white_fill ,(denim ))      |
  −
| (twill_weave  warp_faced  one_color                ,(drill ))      |
  −
| (twill_weave  even_twill  diagonal_rib            ,(serge ))      |
  −
|                                                                    |
  −
| (twill_weave  warp_faced (                                          |
  −
|  (one_color ,                                                      |
  −
|  ((colored_warp )(white_fill )) )                                  |
  −
| ))                                                                  |
  −
|                                                                    |
  −
| (twill_weave  warp_faced ,(denim ),(drill ))                        |
  −
| (twill_weave  even_twill ,(serge ))                                |
  −
|                                                                    |
  −
| ((                                                                  |
  −
|    (  ((plain_weave )(twill_weave ))                              |
  −
|        ((cotton      )(wool        )) napped ,(flannel ))          |
  −
| ))                                                                  |
  −
|                                                                    |
  −
| (satin_weave ,(warp_floats ),(fill_floats ))                        |
  −
|                                                                    |
  −
| (satin_weave ,(satin_weave smooth ),(satin_weave napped ))          |
  −
| (satin_weave ,(satin_weave cotton ),(satin_weave silk  ))          |
  −
|                                                                    |
  −
| (satin_weave  warp_floats  smooth        ,(satin    ))            |
  −
| (satin_weave  fill_floats  smooth        ,(sateen  ))            |
  −
| (satin_weave              napped  cotton ,(moleskin ))            |
  −
|                                                                    |
  −
| (satin_weave ,(satin ),(sateen ),(moleskin ))                      |
  −
|                                                                    |
  −
o---------------------------------------------------------------------o
  −
  −
| Reference [MaW]
  −
|
  −
| Maier, David & Warren, David S.,
  −
|'Computing with Logic:  Logic Programming with Prolog',
  −
| Benjamin/Cummings, Menlo Park, CA, 1988.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
I think that it might be a good idea to go back to a simpler example
  −
of a constraint satisfaction problem, and to discuss the elements of
  −
its expression as a ZOT in a less cluttered setting before advancing
  −
onward once again to problems on the order of the Four Houses Puzzle.
  −
  −
| Applications of a Propositional Calculator:
  −
| Constraint Satisfaction Problems.
  −
| Jon Awbrey, April 24, 1995.
  −
  −
Graph Coloring
  −
  −
Based on the discussion in [Wil, page 196].
  −
  −
One is given three colors, say, orange, silver, indigo,
  −
and a graph on four nodes that has the following shape:
  −
  −
|          1
  −
|          o
  −
|        / \
  −
|        /  \
  −
|    4 o-----o 2
  −
|        \  /
  −
|        \ /
  −
|          o
  −
|          3
  −
  −
The problem is to color the nodes of the graph
  −
in such a way that no pair of nodes that are
  −
adjacent in the graph, that is, linked by
  −
an edge, get the same color.
  −
  −
The objective situation that is to be achieved can be represented
  −
in a so-called "declarative" fashion, in effect, by employing the
  −
cactus language as a very simple sort of declarative programming
  −
language, and depicting the prospective solution to the problem
  −
as a ZOT.
  −
  −
To do this, begin by declaring the following set of
  −
twelve boolean variables or "zeroth order features":
  −
  −
{1_orange, 1_silver, 1_indigo,
  −
2_orange, 2_silver, 2_indigo,
  −
3_orange, 3_silver, 3_indigo,
  −
4_orange, 4_silver, 4_indigo}
  −
  −
The interpretation to keep in mind will be such that
  −
the feature name of the form "<node i>_<color j>"
  −
says that the node i is assigned the color j.
  −
  −
Logical Input File:  Color.Log
  −
o----------------------------------------------------------------------o
  −
|                                                                      |
  −
|  (( 1_orange ),( 1_silver ),( 1_indigo ))                            |
  −
|  (( 2_orange ),( 2_silver ),( 2_indigo ))                            |
  −
|  (( 3_orange ),( 3_silver ),( 3_indigo ))                            |
  −
|  (( 4_orange ),( 4_silver ),( 4_indigo ))                            |
  −
|                                                                      |
  −
|  ( 1_orange  2_orange )( 1_silver  2_silver )( 1_indigo  2_indigo )  |
  −
|  ( 1_orange  4_orange )( 1_silver  4_silver )( 1_indigo  4_indigo )  |
  −
|  ( 2_orange  3_orange )( 2_silver  3_silver )( 2_indigo  3_indigo )  |
  −
|  ( 2_orange  4_orange )( 2_silver  4_silver )( 2_indigo  4_indigo )  |
  −
|  ( 3_orange  4_orange )( 3_silver  4_silver )( 3_indigo  4_indigo )  |
  −
|                                                                      |
  −
o----------------------------------------------------------------------o
  −
  −
The first stanza of verses declares that
  −
every node is assigned exactly one color.
  −
  −
The second stanza of verses declares that
  −
no adjacent nodes get the very same color.
  −
  −
Each satisfying interpretation of this ZOT
  −
that is also a program corresponds to what
  −
graffitists call a "coloring" of the graph.
  −
  −
Theme One's Model interpreter, when we set
  −
it to work on this ZOT, will array  before
  −
our eyes all of the colorings of the graph.
  −
  −
Sense Outline:  Color.Sen
  −
o-----------------------------o
  −
| 1_orange                    |
  −
|  2_silver                  |
  −
|  3_orange                  |
  −
|    4_indigo                |
  −
|  2_indigo                  |
  −
|  3_orange                  |
  −
|    4_silver                |
  −
| 1_silver                    |
  −
|  2_orange                  |
  −
|  3_silver                  |
  −
|    4_indigo                |
  −
|  2_indigo                  |
  −
|  3_silver                  |
  −
|    4_orange                |
  −
| 1_indigo                    |
  −
|  2_orange                  |
  −
|  3_indigo                  |
  −
|    4_silver                |
  −
|  2_silver                  |
  −
|  3_indigo                  |
  −
|    4_orange                |
  −
o-----------------------------o
  −
  −
| Reference [Wil]
  −
|
  −
| Wilf, Herbert S.,
  −
|'Algorithms and Complexity',
  −
| Prentice-Hall, Englewood Cliffs, NJ, 1986.
  −
|
  −
| Nota Bene.  There is a wrong Figure in some
  −
| printings of the book, that does not match
  −
| the description of the Example that is
  −
| given in the text.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Let us continue to examine the properties of the cactus language
  −
as a minimal style of declarative programming language.  Even in
  −
the likes of this zeroth order microcosm one can observe, and on
  −
a good day still more clearly for the lack of other distractions,
  −
many of the buzz worlds that will spring into full bloom, almost
  −
as if from nowhere, to become the first order of business in the
  −
latter day logical organa, plus combinators, plus lambda calculi.
  −
  −
By way of homage to the classics of the art, I can hardly pass
  −
this way without paying my dues to the next sample of examples.
  −
  −
N Queens Problem
  −
  −
I will give the ZOT that describes the N Queens Problem for N = 5,
  −
since that is the most that I and my old 286 could do when last I
  −
wrote up this Example.
  −
  −
The problem is now to write a "zeroth order program" (ZOP) that
  −
describes the following objective:  To place 5 chess queens on
  −
a 5 by 5 chessboard so that no queen attacks any other queen.
  −
  −
It is clear that there can be at most one queen on each row
  −
of the board and so by dint of regal necessity, exactly one
  −
queen in each row of the desired array.  This gambit allows
  −
us to reduce the problem to one of picking a permutation of
  −
five things in fives places, and this affords us sufficient
  −
clue to begin down a likely path toward the intended object,
  −
by recruiting the following phalanx of 25 logical variables:
  −
  −
Literal Input File:  Q5.Lit
  −
o---------------------------------------o
  −
|                                      |
  −
|  q1_r1, q1_r2, q1_r3, q1_r4, q1_r5,  |
  −
|  q2_r1, q2_r2, q2_r3, q2_r4, q2_r5,  |
  −
|  q3_r1, q3_r2, q3_r3, q3_r4, q3_r5,  |
  −
|  q4_r1, q4_r2, q4_r3, q4_r4, q4_r5,  |
  −
|  q5_r1, q5_r2, q5_r3, q5_r4, q5_r5.  |
  −
|                                      |
  −
o---------------------------------------o
  −
  −
Thus we seek to define a function, of abstract type f : %B%^25 -> %B%,
  −
whose fibre of truth f^(-1)(%1%) is a set of interpretations, each of
  −
whose elements bears the abstract type of a point in the space %B%^25,
  −
and whose reading will inform us of our desired set of configurations.
  −
  −
Logical Input File:  Q5.Log
  −
o------------------------------------------------------------o
  −
|                                                            |
  −
|  ((q1_r1 ),(q1_r2 ),(q1_r3 ),(q1_r4 ),(q1_r5 ))            |
  −
|  ((q2_r1 ),(q2_r2 ),(q2_r3 ),(q2_r4 ),(q2_r5 ))            |
  −
|  ((q3_r1 ),(q3_r2 ),(q3_r3 ),(q3_r4 ),(q3_r5 ))            |
  −
|  ((q4_r1 ),(q4_r2 ),(q4_r3 ),(q4_r4 ),(q4_r5 ))            |
  −
|  ((q5_r1 ),(q5_r2 ),(q5_r3 ),(q5_r4 ),(q5_r5 ))            |
  −
|                                                            |
  −
|  ((q1_r1 ),(q2_r1 ),(q3_r1 ),(q4_r1 ),(q5_r1 ))            |
  −
|  ((q1_r2 ),(q2_r2 ),(q3_r2 ),(q4_r2 ),(q5_r2 ))            |
  −
|  ((q1_r3 ),(q2_r3 ),(q3_r3 ),(q4_r3 ),(q5_r3 ))            |
  −
|  ((q1_r4 ),(q2_r4 ),(q3_r4 ),(q4_r4 ),(q5_r4 ))            |
  −
|  ((q1_r5 ),(q2_r5 ),(q3_r5 ),(q4_r5 ),(q5_r5 ))            |
  −
|                                                            |
  −
|  ((                                                        |
  −
|                                                            |
  −
|  (q1_r1 q2_r2 )(q1_r1 q3_r3 )(q1_r1 q4_r4 )(q1_r1 q5_r5 )  |
  −
|                (q2_r2 q3_r3 )(q2_r2 q4_r4 )(q2_r2 q5_r5 )  |
  −
|                              (q3_r3 q4_r4 )(q3_r3 q5_r5 )  |
  −
|                                            (q4_r4 q5_r5 )  |
  −
|                                                            |
  −
|  (q1_r2 q2_r3 )(q1_r2 q3_r4 )(q1_r2 q4_r5 )                |
  −
|                (q2_r3 q3_r4 )(q2_r3 q4_r5 )                |
  −
|                              (q3_r4 q4_r5 )                |
  −
|                                                            |
  −
|  (q1_r3 q2_r4 )(q1_r3 q3_r5 )                              |
  −
|                (q2_r4 q3_r5 )                              |
  −
|                                                            |
  −
|  (q1_r4 q2_r5 )                                            |
  −
|                                                            |
  −
|  (q2_r1 q3_r2 )(q2_r1 q4_r3 )(q2_r1 q5_r4 )                |
  −
|                (q3_r2 q4_r3 )(q3_r2 q5_r4 )                |
  −
|                              (q4_r3 q5_r4 )                |
  −
|                                                            |
  −
|  (q3_r1 q4_r2 )(q3_r1 q5_r3 )                              |
  −
|                (q4_r2 q5_r3 )                              |
  −
|                                                            |
  −
|  (q4_r1 q5_r2 )                                            |
  −
|                                                            |
  −
|  (q1_r5 q2_r4 )(q1_r5 q3_r3 )(q1_r5 q4_r2 )(q1_r5 q5_r1 )  |
  −
|                (q2_r4 q3_r3 )(q2_r4 q4_r2 )(q2_r4 q5_r1 )  |
  −
|                              (q3_r3 q4_r2 )(q3_r3 q5_r1 )  |
  −
|                                            (q4_r2 q5_r1 )  |
  −
|                                                            |
  −
|  (q2_r5 q3_r4 )(q2_r5 q4_r3 )(q2_r5 q5_r2 )                |
  −
|                (q3_r4 q4_r3 )(q3_r4 q5_r2 )                |
  −
|                              (q4_r3 q5_r2 )                |
  −
|                                                            |
  −
|  (q3_r5 q4_r4 )(q3_r5 q5_r3 )                              |
  −
|                (q4_r4 q5_r3 )                              |
  −
|                                                            |
  −
|  (q4_r5 q5_r4 )                                            |
  −
|                                                            |
  −
|  (q1_r4 q2_r3 )(q1_r4 q3_r2 )(q1_r4 q4_r1 )                |
  −
|                (q2_r3 q3_r2 )(q2_r3 q4_r1 )                |
  −
|                              (q3_r2 q4_r1 )                |
  −
|                                                            |
  −
|  (q1_r3 q2_r2 )(q1_r3 q3_r1 )                              |
  −
|                (q2_r2 q3_r1 )                              |
  −
|                                                            |
  −
|  (q1_r2 q2_r1 )                                            |
  −
|                                                            |
  −
|  ))                                                        |
  −
|                                                            |
  −
o------------------------------------------------------------o
  −
  −
The vanguard of this logical regiment consists of two
  −
stock'a'block platoons, the pattern of whose features
  −
is the usual sort of array for conveying permutations.
  −
Between the stations of their respective offices they
  −
serve to warrant that all of the interpretations that
  −
are left standing on the field of valor at the end of
  −
the day will be ones that tell of permutations 5 by 5.
  −
The rest of the ruck and the runt of the mill in this
  −
regimental logos are there to cover the diagonal bias
  −
against attacking queens that is our protocol to suit.
  −
  −
And here is the issue of the day:
  −
  −
Sense Output:  Q5.Sen
  −
o-------------------o
  −
| q1_r1            |
  −
|  q2_r3            |
  −
|  q3_r5          |
  −
|    q4_r2          |
  −
|    q5_r4        | <1>
  −
|  q2_r4            |
  −
|  q3_r2          |
  −
|    q4_r5          |
  −
|    q5_r3        | <2>
  −
| q1_r2            |
  −
|  q2_r4            |
  −
|  q3_r1          |
  −
|    q4_r3          |
  −
|    q5_r5        | <3>
  −
|  q2_r5            |
  −
|  q3_r3          |
  −
|    q4_r1          |
  −
|    q5_r4        | <4>
  −
| q1_r3            |
  −
|  q2_r1            |
  −
|  q3_r4          |
  −
|    q4_r2          |
  −
|    q5_r5        | <5>
  −
|  q2_r5            |
  −
|  q3_r2          |
  −
|    q4_r4          |
  −
|    q5_r1        | <6>
  −
| q1_r4            |
  −
|  q2_r1            |
  −
|  q3_r3          |
  −
|    q4_r5          |
  −
|    q5_r2        | <7>
  −
|  q2_r2            |
  −
|  q3_r5          |
  −
|    q4_r3          |
  −
|    q5_r1        | <8>
  −
| q1_r5            |
  −
|  q2_r2            |
  −
|  q3_r4          |
  −
|    q4_r1          |
  −
|    q5_r3        | <9>
  −
|  q2_r3            |
  −
|  q3_r1          |
  −
|    q4_r4          |
  −
|    q5_r2        | <A>
  −
o-------------------o
  −
  −
The number at least checks with all of the best authorities,
  −
so I can breathe a sigh of relief on that account, at least.
  −
I am sure that there just has to be a more clever way to do
  −
this, that is to say, within the bounds of ZOT reason alone,
  −
but the above is the best that I could figure out with the
  −
time that I had at the time.
  −
  −
References:  [BaC, 166], [VaH, 122], [Wir, 143].
  −
  −
[BaC]  Ball, W.W. Rouse, & Coxeter, H.S.M.,
  −
      'Mathematical Recreations and Essays',
  −
      13th ed., Dover, New York, NY, 1987.
  −
  −
[VaH]  Van Hentenryck, Pascal,
  −
      'Constraint Satisfaction in Logic Programming,
  −
      MIT Press, Cambridge, MA, 1989.
  −
  −
[Wir]  Wirth, Niklaus,
  −
      'Algorithms + Data Structures = Programs',
  −
      Prentice-Hall, Englewood Cliffs, NJ, 1976.
  −
  −
http://mathworld.wolfram.com/QueensProblem.html
  −
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000170
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
I turn now to another golden oldie of a constraint satisfaction problem
  −
that I would like to give here a slightly new spin, but not so much for
  −
the sake of these trifling novelties as from a sense of old time's ache
  −
and a duty to -- well, what's the opposite of novelty?
  −
  −
Phobic Apollo
  −
  −
| Suppose Peter, Paul, and Jane are musicians.  One of them plays
  −
| saxophone, another plays guitar, and the third plays drums.  As
  −
| it happens, one of them is afraid of things associated with the
  −
| number 13, another of them is afraid of cats, and the third is
  −
| afraid of heights.  You also know that Peter and the guitarist
  −
| skydive, that Paul and the saxophone player enjoy cats, and
  −
| that the drummer lives in apartment 13 on the 13th floor.
  −
|
  −
| Soon we will want to use these facts to reason
  −
| about whether or not certain identity relations
  −
| hold or are excluded.  Assume X(Peter, Guitarist)
  −
| means "the person who is Peter is not the person who
  −
| plays the guitar".  In this notation, the facts become:
  −
|
  −
| 1.  X(Peter, Guitarist)
  −
| 2.  X(Peter, Fears Heights)
  −
| 3.  X(Guitarist, Fears Heights)
  −
| 4.  X(Paul, Fears Cats)
  −
| 5.  X(Paul, Saxophonist)
  −
| 6.  X(Saxophonist, Fears Cats)
  −
| 7.  X(Drummer, Fears 13)
  −
| 8.  X(Drummer, Fears Heights)
  −
|
  −
| Exercise attributed to Kenneth D. Forbus, pages 449-450 in:
  −
| Patrick Henry Winston, 'Artificial Intelligence', 2nd ed.,
  −
| Addison-Wesley, Reading, MA, 1984.
  −
  −
Here is one way to represent these facts in the form of a ZOT
  −
and use it as a logical program to draw a succinct conclusion:
  −
  −
Logical Input File:  ConSat.Log
  −
o-----------------------------------------------------------------------o
  −
|                                                                      |
  −
|  (( pete_plays_guitar ),( pete_plays_sax ),( pete_plays_drums ))      |
  −
|  (( paul_plays_guitar ),( paul_plays_sax ),( paul_plays_drums ))      |
  −
|  (( jane_plays_guitar ),( jane_plays_sax ),( jane_plays_drums ))      |
  −
|                                                                      |
  −
|  (( pete_plays_guitar ),( paul_plays_guitar ),( jane_plays_guitar ))  |
  −
|  (( pete_plays_sax    ),( paul_plays_sax    ),( jane_plays_sax    ))  |
  −
|  (( pete_plays_drums  ),( paul_plays_drums  ),( jane_plays_drums  ))  |
  −
|                                                                      |
  −
|  (( pete_fears_13 ),( pete_fears_cats ),( pete_fears_height ))        |
  −
|  (( paul_fears_13 ),( paul_fears_cats ),( paul_fears_height ))        |
  −
|  (( jane_fears_13 ),( jane_fears_cats ),( jane_fears_height ))        |
  −
|                                                                      |
  −
|  (( pete_fears_13    ),( paul_fears_13    ),( jane_fears_13    ))  |
  −
|  (( pete_fears_cats  ),( paul_fears_cats  ),( jane_fears_cats  ))  |
  −
|  (( pete_fears_height ),( paul_fears_height ),( jane_fears_height ))  |
  −
|                                                                      |
  −
|  ((                                                                  |
  −
|                                                                      |
  −
|  ( pete_plays_guitar )                                                |
  −
|  ( pete_fears_height )                                                |
  −
|                                                                      |
  −
|  ( pete_plays_guitar  pete_fears_height )                            |
  −
|  ( paul_plays_guitar  paul_fears_height )                            |
  −
|  ( jane_plays_guitar  jane_fears_height )                            |
  −
|                                                                      |
  −
|  ( paul_fears_cats )                                                  |
  −
|  ( paul_plays_sax  )                                                  |
  −
|                                                                      |
  −
|  ( pete_plays_sax  pete_fears_cats )                                  |
  −
|  ( paul_plays_sax  paul_fears_cats )                                  |
  −
|  ( jane_plays_sax  jane_fears_cats )                                  |
  −
|                                                                      |
  −
|  ( pete_plays_drums  pete_fears_13 )                                  |
  −
|  ( paul_plays_drums  paul_fears_13 )                                  |
  −
|  ( jane_plays_drums  jane_fears_13 )                                  |
  −
|                                                                      |
  −
|  ( pete_plays_drums  pete_fears_height )                              |
  −
|  ( paul_plays_drums  paul_fears_height )                              |
  −
|  ( jane_plays_drums  jane_fears_height )                              |
  −
|                                                                      |
  −
|  ))                                                                  |
  −
|                                                                      |
  −
o-----------------------------------------------------------------------o
  −
  −
Sense Outline:  ConSat.Sen
  −
o-----------------------------o
  −
| pete_plays_drums            |
  −
|  paul_plays_guitar          |
  −
|  jane_plays_sax            |
  −
|    pete_fears_cats          |
  −
|    paul_fears_13          |
  −
|      jane_fears_height      |
  −
o-----------------------------o
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Phobic Apollo (cont.)
  −
  −
It might be instructive to review various aspects
  −
of how the Theme One Study function actually went
  −
about arriving at its answer to that last problem.
  −
Just to prove that my program and I really did do
  −
our homework on that Phobic Apollo ConSat problem,
  −
and didn't just provoke some Oracle or other data
  −
base server to give it away, here is the middling
  −
output of the Model function as run on ConSat.Log:
  −
  −
Model Outline:  ConSat.Mod
  −
o-------------------------------------------------o
  −
| pete_plays_guitar -                            |
  −
| (pete_plays_guitar )                            |
  −
|  pete_plays_sax                                |
  −
|  pete_plays_drums -                            |
  −
|  (pete_plays_drums )                          |
  −
|    paul_plays_sax -                            |
  −
|    (paul_plays_sax )                            |
  −
|    jane_plays_sax -                            |
  −
|    (jane_plays_sax )                          |
  −
|      paul_plays_guitar                          |
  −
|      paul_plays_drums -                        |
  −
|      (paul_plays_drums )                      |
  −
|        jane_plays_guitar -                      |
  −
|        (jane_plays_guitar )                    |
  −
|        jane_plays_drums                        |
  −
|          pete_fears_13                          |
  −
|          pete_fears_cats -                    |
  −
|          (pete_fears_cats )                    |
  −
|            pete_fears_height -                  |
  −
|            (pete_fears_height )                |
  −
|            paul_fears_13 -                    |
  −
|            (paul_fears_13 )                    |
  −
|              jane_fears_13 -                    |
  −
|              (jane_fears_13 )                  |
  −
|              paul_fears_cats -                |
  −
|              (paul_fears_cats )                |
  −
|                paul_fears_height -              |
  −
|                (paul_fears_height ) -          |
  −
|          (pete_fears_13 )                      |
  −
|          pete_fears_cats -                    |
  −
|          (pete_fears_cats )                    |
  −
|            pete_fears_height -                  |
  −
|            (pete_fears_height ) -              |
  −
|        (jane_plays_drums ) -                  |
  −
|      (paul_plays_guitar )                      |
  −
|      paul_plays_drums                          |
  −
|        jane_plays_drums -                      |
  −
|        (jane_plays_drums )                      |
  −
|        jane_plays_guitar                      |
  −
|          pete_fears_13                          |
  −
|          pete_fears_cats -                    |
  −
|          (pete_fears_cats )                    |
  −
|            pete_fears_height -                  |
  −
|            (pete_fears_height )                |
  −
|            paul_fears_13 -                    |
  −
|            (paul_fears_13 )                    |
  −
|              jane_fears_13 -                    |
  −
|              (jane_fears_13 )                  |
  −
|              paul_fears_cats -                |
  −
|              (paul_fears_cats )                |
  −
|                paul_fears_height -              |
  −
|                (paul_fears_height ) -          |
  −
|          (pete_fears_13 )                      |
  −
|          pete_fears_cats -                    |
  −
|          (pete_fears_cats )                    |
  −
|            pete_fears_height -                  |
  −
|            (pete_fears_height ) -              |
  −
|        (jane_plays_guitar ) -                  |
  −
|      (paul_plays_drums ) -                    |
  −
|  (pete_plays_sax )                              |
  −
|  pete_plays_drums                              |
  −
|    paul_plays_drums -                          |
  −
|    (paul_plays_drums )                          |
  −
|    jane_plays_drums -                          |
  −
|    (jane_plays_drums )                        |
  −
|      paul_plays_guitar                          |
  −
|      paul_plays_sax -                          |
  −
|      (paul_plays_sax )                        |
  −
|        jane_plays_guitar -                      |
  −
|        (jane_plays_guitar )                    |
  −
|        jane_plays_sax                          |
  −
|          pete_fears_13 -                        |
  −
|          (pete_fears_13 )                      |
  −
|          pete_fears_cats                      |
  −
|            pete_fears_height -                  |
  −
|            (pete_fears_height )                |
  −
|            paul_fears_cats -                  |
  −
|            (paul_fears_cats )                  |
  −
|              jane_fears_cats -                  |
  −
|              (jane_fears_cats )                |
  −
|              paul_fears_13                    |
  −
|                paul_fears_height -              |
  −
|                (paul_fears_height )            |
  −
|                jane_fears_13 -                |
  −
|                (jane_fears_13 )                |
  −
|                  jane_fears_height *            |
  −
|                  (jane_fears_height ) -        |
  −
|              (paul_fears_13 )                  |
  −
|                paul_fears_height -              |
  −
|                (paul_fears_height ) -          |
  −
|          (pete_fears_cats )                    |
  −
|            pete_fears_height -                  |
  −
|            (pete_fears_height ) -              |
  −
|        (jane_plays_sax ) -                    |
  −
|      (paul_plays_guitar )                      |
  −
|      paul_plays_sax -                          |
  −
|      (paul_plays_sax ) -                      |
  −
|  (pete_plays_drums ) -                        |
  −
o-------------------------------------------------o
  −
  −
This is just the traverse of the "arboreal boolean expansion" (ABE) tree
  −
that Model function germinates from the propositional expression that we
  −
planted in the file Consat.Log, which works to describe the facts of the
  −
situation in question.  Since there are 18 logical feature names in this
  −
propositional expression, we are literally talking about a function that
  −
enjoys the abstract type f : %B%^18 -> %B%.  If I had wanted to evaluate
  −
this function by expressly writing out its truth table, then it would've
  −
required 2^18 = 262144 rows.  Now I didn't bother to count, but I'm sure
  −
that the above output does not have anywhere near that many lines, so it
  −
must be that my program, and maybe even its author, has done a couple of
  −
things along the way that are moderately intelligent.  At least, we hope.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
AK = Antti Karttunen
  −
JA = Jon Awbrey
  −
  −
AK: Am I (and other SeqFanaticians) missing something from this thread?
  −
  −
AK: Your previous message on seqfan (headers below) is a bit of the same topic,
  −
    but does it belong to the same thread?  Where I could obtain the other
  −
    messages belonging to those two threads?  (I'm just now starting to
  −
    study "mathematical logic", and its relations to combinatorics are
  −
    very interesting.)  Is this "cactus" language documented anywhere?
  −
  −
here i was just following a courtesy of copying people
  −
when i reference their works, in this case neil's site:
  −
  −
http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000170
  −
  −
but then i thought that the seqfantasians might be amused, too.
  −
  −
the bit on higher order propositions, in particular,
  −
those of type h : (B^2 -> B) -> B, i sent because
  −
of the significance that 2^2^2^2 = 65536 took on
  −
for us around that time.  & the ho, ho, ho joke.
  −
  −
"zeroth order logic" (zol) is just another name for
  −
the propositional calculus or the sentential logic
  −
that comes before "first order logic" (fol), aka
  −
first intens/tional logic, quantificational logic,
  −
or predicate calculus, depending on who you talk to.
  −
  −
the line of work that i have been doing derives from
  −
the ideas of c.s. peirce (1839-1914), who developed
  −
a couple of systems of "logical graphs", actually,
  −
two variant interpretations of the same abstract
  −
structures, called "entitative" and "existential"
  −
graphs.  he organized his system into "alpha",
  −
"beta", and "gamma" layers, roughly equivalent
  −
to our propositional, quantificational, and
  −
modal levels of logic today.
  −
  −
on the more contemporary scene, peirce's entitative interpretation
  −
of logical graphs was revived and extended by george spencer brown
  −
in his book 'laws of form', while the existential interpretation
  −
has flourished in the development of "conceptual graphs" by
  −
john f sowa and a community of growing multitudes.
  −
  −
a passel of links:
  −
  −
http://members.door.net/arisbe/
  −
http://www.enolagaia.com/GSB.html
  −
http://www.cs.uah.edu/~delugach/CG/
  −
http://www.jfsowa.com/
  −
http://www.jfsowa.com/cg/
  −
http://www.jfsowa.com/peirce/ms514w.htm
  −
http://users.bestweb.net/~sowa/
  −
http://users.bestweb.net/~sowa/peirce/ms514.htm
  −
  −
i have mostly focused on "alpha" (prop calc or zol) --
  −
though the "func conception of quant logic" thread was
  −
a beginning try at saying how the same line of thought
  −
might be extended to 1st, 2nd, & higher order logics --
  −
and i devised a particular graph & string syntax that
  −
is based on a species of cacti, officially described as
  −
the "reflective extension of logical graphs" (ref log),
  −
but more lately just referred to as "cactus language".
  −
  −
it turns out that one can do many interesting things
  −
with prop calc if one has an efficient enough syntax
  −
and a powerful enough interpreter for it, even using
  −
it as a very minimal sort of declarative programming
  −
language, hence, the current thread was directed to
  −
applying "zeroth order theories" (zot's) as brands
  −
of "zeroth order programs" (zop's) to a set of old
  −
constraint satisfaction and knowledge rep examples.
  −
  −
more recent expositions of the cactus language have been directed
  −
toward what some people call "ontology engineering" -- it sounds
  −
so much cooler than "taxonomy" -- and so these are found in the
  −
ieee standard upper ontology working group discussion archives.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Let's now pause and reflect on the mix of abstract and concrete material
  −
that we have cobbled together in spectacle of this "World Of Zero" (WOZ),
  −
since I believe that we may have seen enough, if we look at it right, to
  −
illustrate a few of the more salient phenomena that would normally begin
  −
to weigh in as a major force only on a much larger scale.  Now, it's not
  −
exactly like this impoverished sample, all by itself, could determine us
  −
to draw just the right generalizations, or force us to see the shape and
  −
flow of its immanent law -- it is much too sparse a scattering of points
  −
to tease out the lines of its up and coming generations quite so clearly --
  −
but it can be seen to exemplify many of the more significant themes that
  −
we know evolve in more substantial environments, that is, On Beyond Zero,
  −
since we have already seen them, "tho' obscur'd", in these higher realms.
  −
  −
One the the themes that I want to to keep an eye on as this discussion
  −
develops is the subject that might be called "computation as semiosis".
  −
  −
In this light, any calculus worth its salt must be capable of helping
  −
us do two things, calculation, of course, but also analysis.  This is
  −
probably one of the reasons why the ordinary sort of differential and
  −
integral calculus over quantitative domains is frequently referred to
  −
as "real analysis", or even just "analysis".  It seems quite clear to
  −
me that any adequate logical calculus, in many ways expected to serve
  −
as a qualitative analogue of analytic geometry in the way that it can
  −
be used to describe configurations in logically circumscribed domains,
  −
ought to qualify in both dimensions, namely, analysis and computation.
  −
  −
With all of these various features of the situation in mind, then, we come
  −
to the point of viewing analysis and computation as just so many different
  −
kinds of "sign transformations in respect of pragmata" (STIROP's).  Taking
  −
this insight to heart, let us next work to assemble a comprehension of our
  −
concrete examples, set in the medium of the abstract calculi that allow us
  −
to express their qualitative patterns, that may hope to be an increment or
  −
two less inchoate than we have seen so far, and that may even permit us to
  −
catch the action of these fading fleeting sign transformations on the wing.
  −
  −
Here is how I picture our latest round of examples
  −
as filling out the framework of this investigation:
  −
  −
o-----------------------------o-----------------------------o
  −
|    Objective Framework    |  Interpretive Framework    |
  −
o-----------------------------o-----------------------------o
  −
|                                                          |
  −
|                              s_1 = Logue(o)      |      |
  −
|                              /                    |      |
  −
|                            /                      |      |
  −
|                            @                      |      |
  −
|                          ·  \                      |      |
  −
|                        ·    \                    |      |
  −
|                      ·        i_1 = Model(o)      v      |
  −
|                    ·          s_2 = Model(o)      |      |
  −
|                  ·          /                    |      |
  −
|                ·            /                      |      |
  −
|    Object = o · · · · · · @                      |      |
  −
|                ·            \                      |      |
  −
|                  ·          \                    |      |
  −
|                    ·          i_2 = Tenor(o)      v      |
  −
|                      ·        s_3 = Tenor(o)      |      |
  −
|                        ·    /                    |      |
  −
|                          ·  /                      |      |
  −
|                            @                      |      |
  −
|                            \                      |      |
  −
|                              \                    |      |
  −
|                              i_3 = Sense(o)      v      |
  −
|                                                          |
  −
o-----------------------------------------------------------o
  −
Figure.  Computation As Semiotic Transformation
  −
  −
The Figure shows three distinct sign triples of the form <o, s, i>, where
  −
o = ostensible objective = the observed, indicated, or intended situation.
  −
  −
| A.  <o, Logue(o), Model(o)>
  −
|
  −
| B.  <o, Model(o), Tenor(o)>
  −
|
  −
| C.  <o, Tenor(o), Sense(o)>
  −
  −
Let us bring these several signs together in one place,
  −
to compare and contrast their common and their diverse
  −
characters, and to think about why we make such a fuss
  −
about passing from one to the other in the first place.
  −
  −
1.  Logue(o)  =  Consat.Log
  −
o-----------------------------------------------------------------------o
  −
|                                                                      |
  −
|  (( pete_plays_guitar ),( pete_plays_sax ),( pete_plays_drums ))      |
  −
|  (( paul_plays_guitar ),( paul_plays_sax ),( paul_plays_drums ))      |
  −
|  (( jane_plays_guitar ),( jane_plays_sax ),( jane_plays_drums ))      |
  −
|                                                                      |
  −
|  (( pete_plays_guitar ),( paul_plays_guitar ),( jane_plays_guitar ))  |
  −
|  (( pete_plays_sax    ),( paul_plays_sax    ),( jane_plays_sax    ))  |
  −
|  (( pete_plays_drums  ),( paul_plays_drums  ),( jane_plays_drums  ))  |
  −
|                                                                      |
  −
|  (( pete_fears_13 ),( pete_fears_cats ),( pete_fears_height ))        |
  −
|  (( paul_fears_13 ),( paul_fears_cats ),( paul_fears_height ))        |
  −
|  (( jane_fears_13 ),( jane_fears_cats ),( jane_fears_height ))        |
  −
|                                                                      |
  −
|  (( pete_fears_13    ),( paul_fears_13    ),( jane_fears_13    ))  |
  −
|  (( pete_fears_cats  ),( paul_fears_cats  ),( jane_fears_cats  ))  |
  −
|  (( pete_fears_height ),( paul_fears_height ),( jane_fears_height ))  |
  −
|                                                                      |
  −
|  ((                                                                  |
  −
|                                                                      |
  −
|  ( pete_plays_guitar )                                                |
  −
|  ( pete_fears_height )                                                |
  −
|                                                                      |
  −
|  ( pete_plays_guitar  pete_fears_height )                            |
  −
|  ( paul_plays_guitar  paul_fears_height )                            |
  −
|  ( jane_plays_guitar  jane_fears_height )                            |
  −
|                                                                      |
  −
|  ( paul_fears_cats )                                                  |
  −
|  ( paul_plays_sax  )                                                  |
  −
|                                                                      |
  −
|  ( pete_plays_sax  pete_fears_cats )                                  |
  −
|  ( paul_plays_sax  paul_fears_cats )                                  |
  −
|  ( jane_plays_sax  jane_fears_cats )                                  |
  −
|                                                                      |
  −
|  ( pete_plays_drums  pete_fears_13 )                                  |
  −
|  ( paul_plays_drums  paul_fears_13 )                                  |
  −
|  ( jane_plays_drums  jane_fears_13 )                                  |
  −
|                                                                      |
  −
|  ( pete_plays_drums  pete_fears_height )                              |
  −
|  ( paul_plays_drums  paul_fears_height )                              |
  −
|  ( jane_plays_drums  jane_fears_height )                              |
  −
|                                                                      |
  −
|  ))                                                                  |
  −
|                                                                      |
  −
o-----------------------------------------------------------------------o
  −
  −
2.  Model(o)  =  Consat.Mod  ><>  http://suo.ieee.org/ontology/msg03718.html
  −
  −
3.  Tenor(o)  =  Consat.Ten (Just The Gist Of It)
  −
o-------------------------------------------------o
  −
| (pete_plays_guitar )                            | <01> -
  −
|  (pete_plays_sax )                              | <02> -
  −
|  pete_plays_drums                              | <03> +
  −
|    (paul_plays_drums )                          | <04> -
  −
|    (jane_plays_drums )                        | <05> -
  −
|      paul_plays_guitar                          | <06> +
  −
|      (paul_plays_sax )                        | <07> -
  −
|        (jane_plays_guitar )                    | <08> -
  −
|        jane_plays_sax                          | <09> +
  −
|          (pete_fears_13 )                      | <10> -
  −
|          pete_fears_cats                      | <11> +
  −
|            (pete_fears_height )                | <12> -
  −
|            (paul_fears_cats )                  | <13> -
  −
|              (jane_fears_cats )                | <14> -
  −
|              paul_fears_13                    | <15> +
  −
|                (paul_fears_height )            | <16> -
  −
|                (jane_fears_13 )                | <17> -
  −
|                  jane_fears_height *            | <18> +
  −
o-------------------------------------------------o
  −
  −
4.  Sense(o)  =  Consat.Sen
  −
o-------------------------------------------------o
  −
| pete_plays_drums                                | <03>
  −
|  paul_plays_guitar                              | <06>
  −
|  jane_plays_sax                                | <09>
  −
|    pete_fears_cats                              | <11>
  −
|    paul_fears_13                              | <15>
  −
|      jane_fears_height                          | <18>
  −
o-------------------------------------------------o
  −
  −
As one proceeds through the subsessions of the Theme One Study session,
  −
the computation transforms its larger "signs", in this case text files,
  −
from one to the next, in the sequence:  Logue, Model, Tenor, and Sense.
  −
  −
Let us see if we can pin down, on sign-theoretic grounds,
  −
why this very sort of exercise is so routinely necessary.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
We were in the middle of pursuing several questions about
  −
sign relational transformations in general, in particular,
  −
the following Example of a sign transformation that arose
  −
in the process of setting up and solving a classical sort
  −
of constraint satisfaction problem.
  −
  −
o-----------------------------o-----------------------------o
  −
|    Objective Framework    |  Interpretive Framework    |
  −
o-----------------------------o-----------------------------o
  −
|                                                          |
  −
|                              s_1 = Logue(o)      |      |
  −
|                              /                    |      |
  −
|                            /                      |      |
  −
|                            @                      |      |
  −
|                          ·  \                      |      |
  −
|                        ·    \                    |      |
  −
|                      ·        i_1 = Model(o)      v      |
  −
|                    ·          s_2 = Model(o)      |      |
  −
|                  ·          /                    |      |
  −
|                ·            /                      |      |
  −
|    Object = o · · · · · · @                      |      |
  −
|                ·            \                      |      |
  −
|                  ·          \                    |      |
  −
|                    ·          i_2 = Tenor(o)      v      |
  −
|                      ·        s_3 = Tenor(o)      |      |
  −
|                        ·    /                    |      |
  −
|                          ·  /                      |      |
  −
|                            @                      |      |
  −
|                            \                      |      |
  −
|                              \                    |      |
  −
|                              i_3 = Sense(o)      v      |
  −
|                                                          |
  −
o-----------------------------------------------------------o
  −
Figure.  Computation As Semiotic Transformation
  −
  −
1.  Logue(o)  =  Consat.Log
  −
o-----------------------------------------------------------------------o
  −
|                                                                      |
  −
|  (( pete_plays_guitar ),( pete_plays_sax ),( pete_plays_drums ))      |
  −
|  (( paul_plays_guitar ),( paul_plays_sax ),( paul_plays_drums ))      |
  −
|  (( jane_plays_guitar ),( jane_plays_sax ),( jane_plays_drums ))      |
  −
|                                                                      |
  −
|  (( pete_plays_guitar ),( paul_plays_guitar ),( jane_plays_guitar ))  |
  −
|  (( pete_plays_sax    ),( paul_plays_sax    ),( jane_plays_sax    ))  |
  −
|  (( pete_plays_drums  ),( paul_plays_drums  ),( jane_plays_drums  ))  |
  −
|                                                                      |
  −
|  (( pete_fears_13 ),( pete_fears_cats ),( pete_fears_height ))        |
  −
|  (( paul_fears_13 ),( paul_fears_cats ),( paul_fears_height ))        |
  −
|  (( jane_fears_13 ),( jane_fears_cats ),( jane_fears_height ))        |
  −
|                                                                      |
  −
|  (( pete_fears_13    ),( paul_fears_13    ),( jane_fears_13    ))  |
  −
|  (( pete_fears_cats  ),( paul_fears_cats  ),( jane_fears_cats  ))  |
  −
|  (( pete_fears_height ),( paul_fears_height ),( jane_fears_height ))  |
  −
|                                                                      |
  −
|  ((                                                                  |
  −
|                                                                      |
  −
|  ( pete_plays_guitar )                                                |
  −
|  ( pete_fears_height )                                                |
  −
|                                                                      |
  −
|  ( pete_plays_guitar  pete_fears_height )                            |
  −
|  ( paul_plays_guitar  paul_fears_height )                            |
  −
|  ( jane_plays_guitar  jane_fears_height )                            |
  −
|                                                                      |
  −
|  ( paul_fears_cats )                                                  |
  −
|  ( paul_plays_sax  )                                                  |
  −
|                                                                      |
  −
|  ( pete_plays_sax  pete_fears_cats )                                  |
  −
|  ( paul_plays_sax  paul_fears_cats )                                  |
  −
|  ( jane_plays_sax  jane_fears_cats )                                  |
  −
|                                                                      |
  −
|  ( pete_plays_drums  pete_fears_13 )                                  |
  −
|  ( paul_plays_drums  paul_fears_13 )                                  |
  −
|  ( jane_plays_drums  jane_fears_13 )                                  |
  −
|                                                                      |
  −
|  ( pete_plays_drums  pete_fears_height )                              |
  −
|  ( paul_plays_drums  paul_fears_height )                              |
  −
|  ( jane_plays_drums  jane_fears_height )                              |
  −
|                                                                      |
  −
|  ))                                                                  |
  −
|                                                                      |
  −
o-----------------------------------------------------------------------o
  −
  −
2.  Model(o)  =  Consat.Mod  ><>  http://suo.ieee.org/ontology/msg03718.html
  −
  −
3.  Tenor(o)  =  Consat.Ten (Just The Gist Of It)
  −
o-------------------------------------------------o
  −
| (pete_plays_guitar )                            | <01> -
  −
|  (pete_plays_sax )                              | <02> -
  −
|  pete_plays_drums                              | <03> +
  −
|    (paul_plays_drums )                          | <04> -
  −
|    (jane_plays_drums )                        | <05> -
  −
|      paul_plays_guitar                          | <06> +
  −
|      (paul_plays_sax )                        | <07> -
  −
|        (jane_plays_guitar )                    | <08> -
  −
|        jane_plays_sax                          | <09> +
  −
|          (pete_fears_13 )                      | <10> -
  −
|          pete_fears_cats                      | <11> +
  −
|            (pete_fears_height )                | <12> -
  −
|            (paul_fears_cats )                  | <13> -
  −
|              (jane_fears_cats )                | <14> -
  −
|              paul_fears_13                    | <15> +
  −
|                (paul_fears_height )            | <16> -
  −
|                (jane_fears_13 )                | <17> -
  −
|                  jane_fears_height *            | <18> +
  −
o-------------------------------------------------o
  −
  −
4.  Sense(o)  =  Consat.Sen
  −
o-------------------------------------------------o
  −
| pete_plays_drums                                | <03>
  −
|  paul_plays_guitar                              | <06>
  −
|  jane_plays_sax                                | <09>
  −
|    pete_fears_cats                              | <11>
  −
|    paul_fears_13                              | <15>
  −
|      jane_fears_height                          | <18>
  −
o-------------------------------------------------o
  −
  −
We can worry later about the proper use of quotation marks
  −
in discussing such a case, where the file name "Yada.Yak"
  −
denotes a piece of text that expresses a proposition that
  −
describes an objective situation or an intentional object,
  −
but whatever the case it is clear that we are knee & neck
  −
deep in a sign relational situation of a modest complexity.
  −
  −
I think that the right sort of analogy might help us
  −
to sort it out, or at least to tell what's important
  −
from the things that are less so.  The paradigm that
  −
comes to mind for me is the type of context in maths
  −
where we talk about the "locus" or the "solution set"
  −
of an equation, and here we think of the equation as
  −
denoting its solution set or describing a locus, say,
  −
a point or a curve or a surface or so on up the scale.
  −
  −
In this figure of speech, we might say for instance:
  −
  −
| o is
  −
| what "x^3 - 3x^2 + 3x - 1 = 0" denotes is
  −
| what "(x-1)^3 = 0" denotes is
  −
| what "1" denotes
  −
| is 1.
  −
  −
Making explicit the assumptive interpretations
  −
that the context probably enfolds in this case,
  −
we assume this description of the solution set:
  −
  −
{x in the Reals : x^3 - 3x^2 + 3x -1 = 0} = {1}.
  −
  −
In sign relational terms, we have the 3-tuples:
  −
  −
| <o, "x^3 - 3x^2 + 3x - 1 = 0", "(x-1)^3 = 0">
  −
|
  −
| <o, "(x-1)^3 = 0", "1">
  −
|
  −
| <o, "1", "1">
  −
  −
As it turns out we discover that the
  −
object o was really just 1 all along.
  −
  −
But why do we put ourselves through the rigors of these
  −
transformations at all?  If 1 is what we mean, why not
  −
just say "1" in the first place and be done with it?
  −
A person who asks a question like that has forgetten
  −
how we keep getting ourselves into these quandaries,
  −
and who it is that assigns the problems, for it is
  −
Nature herself who is the taskmistress here and the
  −
problems are set in the manner that she determines,
  −
not in the style to which we would like to become
  −
accustomed.  The best that we can demand of our
  −
various and sundry calculi is that they afford
  −
us with the nets and the snares more readily
  −
to catch the shape of the problematic game
  −
as it flies up before us on its own wings,
  −
and only then to tame it to the amenable
  −
demeanors that we find to our liking.
  −
  −
In sum, the first place is not ours to take.
  −
We are but poor second players in this game.
  −
  −
That understood, I can now lay out our present Example
  −
along the lines of this familiar mathematical exercise.
  −
  −
| o is
  −
| what Consat.Log denotes is
  −
| what Consat.Mod denotes is
  −
| what Consat.Ten denotes is
  −
| what Consat.Sen denotes.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
It will be good to keep this picture before us a while longer:
  −
  −
o-----------------------------o-----------------------------o
  −
|    Objective Framework    |  Interpretive Framework    |
  −
o-----------------------------o-----------------------------o
  −
|                                                          |
  −
|                              s_1  =  Logue(o)    |      |
  −
|                              /                    |      |
  −
|                            /                      |      |
  −
|                            @                      |      |
  −
|                          ·  \                      |      |
  −
|                        ·    \                    |      |
  −
|                      ·        i_1  =  Model(o)    v      |
  −
|                    ·          s_2  =  Model(o)    |      |
  −
|                  ·          /                    |      |
  −
|                ·            /                      |      |
  −
|  Object  =  o · · · · · · @                      |      |
  −
|                ·            \                      |      |
  −
|                  ·          \                    |      |
  −
|                    ·          i_2  =  Tenor(o)    v      |
  −
|                      ·        s_3  =  Tenor(o)    |      |
  −
|                        ·    /                    |      |
  −
|                          ·  /                      |      |
  −
|                            @                      |      |
  −
|                            \                      |      |
  −
|                              \                    |      |
  −
|                              i_3  =  Sense(o)    v      |
  −
|                                                          |
  −
o-----------------------------------------------------------o
  −
Figure.  Computation As Semiotic Transformation
  −
  −
The labels that decorate the syntactic plane and indicate
  −
the semiotic transitions in the interpretive panel of the
  −
framework point us to text files whose contents rest here:
  −
  −
http://suo.ieee.org/ontology/msg03722.html
  −
  −
The reason that I am troubling myself -- and no doubt you --
  −
with the details of this Example is because it highlights
  −
a number of the thistles that we will have to grasp if we
  −
ever want to escape from the traps of YARNBOL and YARWARS
  −
in which so many of our fairweather fiends are seeking to
  −
ensnare us, and not just us -- the whole web of the world.
  −
  −
YARNBOL  =  Yet Another Roman Numeral Based Ontology Language.
  −
YARWARS  =  Yet Another Representation Without A Reasoning System.
  −
  −
In order to avoid this, or to reverse the trend once it gets started,
  −
we just have to remember what a dynamic living process a computation
  −
really is, precisely because it is meant to serve as an iconic image
  −
of dynamic, deliberate, purposeful transformations that we are bound
  −
to go through and to carry out in a hopeful pursuit of the solutions
  −
to the many real live problems that life and society place before us.
  −
So I take it rather seriously.
  −
  −
Okay, back to the grindstone.
  −
  −
The question is:  "Why are these trips necessary?"
  −
  −
How come we don't just have one proper expression
  −
for each situation under the sun, or all possible
  −
suns, I guess, for some, and just use that on any
  −
appearance, instance, occasion of that situation?
  −
  −
Why is it ever necessary to begin with an obscure description
  −
of a situation? -- for that is exactly what the propositional
  −
expression caled "Logue(o)", for Example, the Consat.Log file,
  −
really is.
  −
  −
Maybe I need to explain that first.
  −
  −
The first three items of syntax -- Logue(o), Model(o), Tenor(o) --
  −
are all just so many different propositional expressions that
  −
denote one and the same logical-valued function p : X -> %B%,
  −
and one whose abstract image we may well enough describe as
  −
a boolean function of the abstract type q : %B%^k -> %B%,
  −
where k happens to be 18 in the present Consat Example.
  −
  −
If we were to write out the truth table for q : %B%^18 -> %B%
  −
it would take 2^18 = 262144 rows.  Using the bold letter #x#
  −
for a coordinate tuple, writing #x# = <x_1, ..., x_18>, each
  −
row of the table would have the form <x_1, ..., x_18, q(#x#)>.
  −
And the function q is such that all rows evalue to %0% save 1.
  −
  −
Each of the four different formats expresses this fact about q
  −
in its own way.  The first three are logically equivalent, and
  −
the last one is the maximally determinate positive implication
  −
of what the others all say.
  −
  −
From this point of view, the logical computation that we went through,
  −
in the sequence Logue, Model, Tenor, Sense, was a process of changing
  −
from an obscure sign of the objective proposition to a more organized
  −
arrangement of its satisfying or unsatisfying interpretations, to the
  −
most succinct possible expression of the same meaning, to an adequate
  −
positive projection of it that is useful enough in the proper context.
  −
  −
This is the sort of mill -- it's called "computation" -- that we have
  −
to be able to put our representations through on a recurrent, regular,
  −
routine basis, that is, if we expect them to have any utility at all.
  −
And it is only when we have started to do that in genuinely effective
  −
and efficient ways, that we can even begin to think about facilitating
  −
any bit of qualitative conceptual analysis through computational means.
  −
  −
And as far as the qualitative side of logical computation
  −
and conceptual analysis goes, we have barely even started.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
We are contemplating the sequence of initial and normal forms
  −
for the Consat problem and we have noted the following system
  −
of logical relations, taking the enchained expressions of the
  −
objective situation o in a pairwise associated way, of course:
  −
  −
Logue(o)  <=>  Model(o)  <=>  Tenor(o)  =>  Sense(o).
  −
  −
The specifics of the propositional expressions are cited here:
  −
  −
http://suo.ieee.org/ontology/msg03722.html
  −
  −
If we continue to pursue the analogy that we made with the form
  −
of mathematical activity commonly known as "solving equations",
  −
then there are many salient features of this type of logical
  −
problem solving endeavor that suddenly leap into the light.
  −
  −
First of all, we notice the importance of "equational reasoning"
  −
in mathematics, by which I mean, not just the quantitative type
  −
of equation that forms the matter of the process, but also the
  −
qualitative type of equation, or the "logical equivalence",
  −
that connects each expression along the way, right up to
  −
the penultimate stage, when we are satisfied in a given
  −
context to take a projective implication of the total
  −
knowledge of the situation that we have been taking
  −
some pains to preserve at every intermediate stage
  −
of the game.
  −
  −
This general pattern or strategy of inference, working its way through
  −
phases of "equational" or "total information preserving" inference and
  −
phases of "implicational" or "selective information losing" inference,
  −
is actually very common throughout mathematics, and I have in mind to
  −
examine its character in greater detail and in a more general setting.
  −
  −
Just as the barest hint of things to come along these lines, you might
  −
consider the question of what would constitute the equational analogue
  −
of modus ponens, in other words the scheme of inference that goes from
  −
x and x=>y to y.  Well the answer is a scheme of inference that passes
  −
from x and x=>y to x&y, and then being reversible, back again.  I will
  −
explore the rationale and the utility of this gambit in future reports.
  −
  −
One observation that we can make already at this point,
  −
however, is that these schemes of equational reasoning,
  −
or reversible inference, remain poorly developed among
  −
our currently prevailing styles of inference in logic,
  −
their potentials for applied logical software hardly
  −
being broached in our presently available systems.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
  −
Extra Examples
  −
  −
1.  Propositional logic example.
  −
Files:  Alpha.lex + Prop.log
  −
Ref:    [Cha, 20, Example 2.12]
  −
  −
2.  Chemical synthesis problem.
  −
Files:  Chem.*
  −
Ref:    [Cha, 21, Example 2.13]
  −
  −
3.  N Queens problem.
  −
Files:  Queen*.*,  Q8.*,  Q5.*
  −
Refs:  [BaC, 166], [VaH, 122], [Wir, 143].
  −
Notes:  Only the 5 Queens example will run in 640K memory.
  −
        Use the "Queen.lex" file to load the "Q5.eg*" log files.
  −
  −
4.  Five Houses puzzle.
  −
Files:  House.*
  −
Ref:    [VaH, 132].
  −
Notes:  Will not run in 640K memory.
  −
  −
5.  Graph coloring example.
  −
Files:  Color.*
  −
Ref:    [Wil, 196].
  −
  −
6.  Examples of Cook's Theorem in computational complexity,
  −
    that propositional satisfiability is NP-complete.
  −
  −
Files:  StiltN.* = "Space and Time Limited Turing Machine",
  −
        with N units of space and N units of time.
  −
        StuntN.* = "Space and Time Limited Turing Machine",
  −
        for computing the parity of a bit string,
  −
        with Number of Tape cells of input equal to N.
  −
Ref:    [Wil, 188-201].
  −
Notes:  Can only run Turing machine example for input of size 2.
  −
        Since the last tape cell is used for an end-of-file marker,
  −
        this amounts to only one significant digit of computation.
  −
        Use the "Stilt3.lex" file  to load the "Stunt2.egN" files.
  −
        Their Sense file outputs appear on the "Stunt2.seN" files.
  −
  −
7.  Fabric knowledge base.
  −
Files:  Fabric.*, Fab.*
  −
Ref:    [MaW, 8-16].
  −
  −
8.  Constraint Satisfaction example.
  −
Files:  Consat1.*, Consat2.*
  −
Ref:    [Win, 449, Exercise 3-9].
  −
Notes:  Attributed to Kenneth D. Forbus.
  −
  −
References
  −
  −
| Angluin, Dana,
  −
|"Learning with Hints", in
  −
|'Proceedings of the 1988 Workshop on Computational Learning Theory',
  −
| edited by D. Haussler & L. Pitt, Morgan Kaufmann, San Mateo, CA, 1989.
  −
  −
| Ball, W.W. Rouse, & Coxeter, H.S.M.,
  −
|'Mathematical Recreations and Essays', 13th ed.,
  −
| Dover, New York, NY, 1987.
  −
  −
| Chang, Chin-Liang & Lee, Richard Char-Tung,
  −
|'Symbolic Logic and Mechanical Theorem Proving',
  −
| Academic Press, New York, NY, 1973.
  −
  −
| Denning, Peter J., Dennis, Jack B., and Qualitz, Joseph E.,
  −
|'Machines, Languages, and Computation',
  −
| Prentice-Hall, Englewood Cliffs, NJ, 1978.
  −
  −
| Edelman, Gerald M.,
  −
|'Topobiology:  An Introduction to Molecular Embryology',
  −
| Basic Books, New York, NY, 1988.
  −
  −
| Lloyd, J.W.,
  −
|'Foundations of Logic Programming',
  −
| Springer-Verlag, Berlin, 1984.
  −
  −
| Maier, David & Warren, David S.,
  −
|'Computing with Logic:  Logic Programming with Prolog',
  −
| Benjamin/Cummings, Menlo Park, CA, 1988.
  −
  −
| McClelland, James L. and Rumelhart, David E.,
  −
|'Explorations in Parallel Distributed Processing:
  −
| A Handbook of Models, Programs, and Exercises',
  −
| MIT Press, Cambridge, MA, 1988.
  −
  −
| Peirce, Charles Sanders,
  −
|'Collected Papers of Charles Sanders Peirce',
  −
| edited by Charles Hartshorne, Paul Weiss, & Arthur W. Burks,
  −
| Harvard University Press, Cambridge, MA, 1931-1960.
  −
  −
| Peirce, Charles Sanders,
  −
|'The New Elements of Mathematics',
  −
| edited by Carolyn Eisele, Mouton, The Hague, 1976.
  −
  −
|'Charles S. Peirce:  Selected Writings;  Values in a Universe of Chance',
  −
| edited by Philip P. Wiener, Dover, New York, NY, 1966.
  −
  −
| Spencer Brown, George,
  −
|'Laws of Form',
  −
| George Allen & Unwin, London, UK, 1969.
  −
  −
| Van Hentenryck, Pascal,
  −
|'Constraint Satisfaction in Logic Programming',
  −
| MIT Press, Cambridge, MA, 1989.
  −
  −
| Wilf, Herbert S.,
  −
|'Algorithms and Complexity',
  −
| Prentice-Hall, Englewood Cliffs, NJ, 1986.
  −
  −
| Winston, Patrick Henry,
  −
|'Artificial Intelligence, 2nd ed.,
  −
| Addison-Wesley, Reading, MA, 1984.
  −
  −
| Wirth, Niklaus,
  −
|'Algorithms + Data Structures = Programs',
  −
| Prentice-Hall, Englewood Cliffs, NJ, 1976.
  −
  −
o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o~~~~~~~~~o
  −
</pre>
      
==Document History==
 
==Document History==
12,080

edits

Navigation menu