Line 379: |
Line 379: |
| A suitably generic definition of the extended universe of discourse is afforded by the following set-up: | | A suitably generic definition of the extended universe of discourse is afforded by the following set-up: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | | | | |
| <math>\begin{array}{lccl} | | <math>\begin{array}{lccl} |
Line 404: |
Line 404: |
| For a proposition of the form <math>f : X_1 \times \ldots \times X_k \to \mathbb{B},</math> the ''(first order) enlargement'' of <math>f\!</math> is the proposition <math>\operatorname{E}f : \operatorname{E}X \to \mathbb{B}</math> that is defined by the following equation: | | For a proposition of the form <math>f : X_1 \times \ldots \times X_k \to \mathbb{B},</math> the ''(first order) enlargement'' of <math>f\!</math> is the proposition <math>\operatorname{E}f : \operatorname{E}X \to \mathbb{B}</math> that is defined by the following equation: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 419: |
Line 419: |
| In the example of logical conjunction, <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is formulated as follows: | | In the example of logical conjunction, <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is formulated as follows: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
Line 432: |
Line 432: |
| Given that this expression uses nothing more than the boolean ring operations of addition and multiplication, it is permissible to "multiply things out" in the usual manner to arrive at the following result: | | Given that this expression uses nothing more than the boolean ring operations of addition and multiplication, it is permissible to "multiply things out" in the usual manner to arrive at the following result: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 449: |
Line 449: |
| To understand what the ''enlarged'' or ''shifted'' proposition means in logical terms, it serves to go back and analyze the above expression for <math>\operatorname{E}f</math> in the same way that we did for <math>\operatorname{D}f.</math> Toward that end, the value of <math>\operatorname{E}f_x</math> at each <math>x \in X</math> may be computed in graphical fashion as shown below: | | To understand what the ''enlarged'' or ''shifted'' proposition means in logical terms, it serves to go back and analyze the above expression for <math>\operatorname{E}f</math> in the same way that we did for <math>\operatorname{D}f.</math> Toward that end, the value of <math>\operatorname{E}f_x</math> at each <math>x \in X</math> may be computed in graphical fashion as shown below: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="20" style="text-align:center; width:90%" |
− | | align="center" | | + | | [[Image:Cactus Graph Ef = (P,dP)(Q,dQ).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | p dp q dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / |
| |
− | | \| |/ |
| |
− | | @=@ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Ef = (p, dp) (q, dq) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 482: |
Line 468: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 499: |
Line 485: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 516: |
Line 502: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 536: |
Line 522: |
| Given the data that develops in this form of analysis, the disjoined ingredients can now be folded back into a boolean expansion or a disjunctive normal form (DNF) that is equivalent to the enlarged proposition <math>\operatorname{E}f.</math> | | Given the data that develops in this form of analysis, the disjoined ingredients can now be folded back into a boolean expansion or a disjunctive normal form (DNF) that is equivalent to the enlarged proposition <math>\operatorname{E}f.</math> |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" width="90%" |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
Line 553: |
Line 539: |
| Here is a summary of the result, illustrated by means of a digraph picture, where the "no change" element <math>(\operatorname{d}p)(\operatorname{d}q)</math> is drawn as a loop at the point <math>p~q.</math> | | Here is a summary of the result, illustrated by means of a digraph picture, where the "no change" element <math>(\operatorname{d}p)(\operatorname{d}q)</math> is drawn as a loop at the point <math>p~q.</math> |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Directed Graph PQ Enlargement Conj.jpg|500px]] | | | [[Image:Directed Graph PQ Enlargement Conj.jpg|500px]] |
| |} | | |} |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | | | | |
| <math>\begin{array}{rcccccc} | | <math>\begin{array}{rcccccc} |