Line 262: |
Line 262: |
| In the example <math>f(p, q) = pq,\!</math> the value of the difference proposition <math>\operatorname{D}f_x</math> at each of the four points in <math>x \in X\!</math> may be computed in graphical fashion as shown below: | | In the example <math>f(p, q) = pq,\!</math> the value of the difference proposition <math>\operatorname{D}f_x</math> at each of the four points in <math>x \in X\!</math> may be computed in graphical fashion as shown below: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" style="text-align:center; width:90%" |
− | | align="center" | | + | | [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | p dp q dq |
| |
− | | o---o o---o |
| |
− | | \ | | / |
| |
− | | \ | | / |
| |
− | | \| |/ p q |
| |
− | | o=o-----------o |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | \ / |
| |
− | | @ |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | Df = ((p, dp)(q, dq), pq) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 309: |
Line 288: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 333: |
Line 312: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 357: |
Line 336: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 384: |
Line 363: |
| The easy way to visualize the values of these graphical expressions is just to notice the following equivalents: | | The easy way to visualize the values of these graphical expressions is just to notice the following equivalents: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellspacing="10" style="text-align:center; width:90%" |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 404: |
Line 383: |
| </pre> | | </pre> |
| |- | | |- |
− | | align="center" |
| + | | |
| <pre> | | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
Line 427: |
Line 406: |
| Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''. | | Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''. |
| | | |
− | {| align="center" cellpadding="10" | + | {| align="center" cellspacing="10" |
| | [[Image:Venn Diagram PQ Difference Conj.jpg|500px]] | | | [[Image:Venn Diagram PQ Difference Conj.jpg|500px]] |
| |} | | |} |
Line 433: |
Line 412: |
| The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions:: | | The Figure shows the points of the extended universe <math>\operatorname{E}X = P \times Q \times \operatorname{d}P \times \operatorname{d}Q</math> that are indicated by the difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B},</math> namely, the following six points or singular propositions:: |
| | | |
− | {| align="center" cellpadding="6" | + | {| align="center" cellspacing="10" |
| | | | | |
| <math>\begin{array}{rcccc} | | <math>\begin{array}{rcccc} |