Line 172:
Line 172:
following formula:
following formula:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| align="center" |
| align="center" |
<math>\begin{matrix}
<math>\begin{matrix}
Line 185:
Line 185:
In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows:
In the example <math>f(p, q) = pq,\!</math> the enlargement <math>\operatorname{E}f</math> is computed as follows:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| align="center" |
| align="center" |
<math>\begin{matrix}
<math>\begin{matrix}
Line 202:
Line 202:
Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full:
Given the proposition <math>f(p, q)\!</math> over <math>X = P \times Q,</math> the ''(first order) difference'' of <math>f\!</math> is the proposition <math>\operatorname{D}f</math> over <math>\operatorname{E}X</math> that is defined by the formula <math>\operatorname{D}f = \operatorname{E}f - f,</math> or, written out in full:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| align="center" |
| align="center" |
<math>\begin{matrix}
<math>\begin{matrix}
Line 215:
Line 215:
In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows:
In the example <math>f(p, q) = pq,\!</math> the difference <math>\operatorname{D}f</math> is computed as follows:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| align="center" |
| align="center" |
<math>\begin{matrix}
<math>\begin{matrix}
Line 224:
Line 224:
\texttt{((} p, \operatorname{d}p \texttt{)(} q, \operatorname{d}q \texttt{)}, pq \texttt{)}
\texttt{((} p, \operatorname{d}p \texttt{)(} q, \operatorname{d}q \texttt{)}, pq \texttt{)}
\end{matrix}</math>
\end{matrix}</math>
−
|-
+
|}
−
| align="center" |
+
−
<pre>
+
{| align="center" cellspacing="10"
−
o-------------------------------------------------o
+
| [[Image:Cactus Graph Df = ((P,dP)(Q,dQ),PQ).jpg|500px]]
−
| |
−
| p dp q dq |
−
| o---o o---o |
−
| \ | | / |
−
| \ | | / |
−
| \| |/ p q |
−
| o=o-----------o |
−
| \ / |
−
| \ / |
−
| \ / |
−
| \ / |
−
| \ / |
−
| \ / |
−
| @ |
−
| |
−
o-------------------------------------------------o
−
| Df = ((p, dp)(q, dq), pq) |
−
o-------------------------------------------------o
−
</pre>
|}
|}
We did not yet go through the trouble to interpret this (first order) ''difference of conjunction'' fully, but were happy simply to evaluate it with respect to a single location in the universe of discourse, namely, at the point picked out by the singular proposition <math>pq,\!</math> that is, at the place where <math>p = 1\!</math> and <math>q = 1.\!</math> This evaluation is written in the form <math>\operatorname{D}f|_{pq}</math> or <math>\operatorname{D}f|_{(1, 1)},</math> and we arrived at the locally applicable law that is stated and illustrated as follows:
We did not yet go through the trouble to interpret this (first order) ''difference of conjunction'' fully, but were happy simply to evaluate it with respect to a single location in the universe of discourse, namely, at the point picked out by the singular proposition <math>pq,\!</math> that is, at the place where <math>p = 1\!</math> and <math>q = 1.\!</math> This evaluation is written in the form <math>\operatorname{D}f|_{pq}</math> or <math>\operatorname{D}f|_{(1, 1)},</math> and we arrived at the locally applicable law that is stated and illustrated as follows:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| align="center" |
| align="center" |
<math>f(p, q) ~=~ pq ~=~ p ~\operatorname{and}~ q \quad \Rightarrow \quad \operatorname{D}f|_{pq} ~=~ \texttt{((} \operatorname{dp} \texttt{)(} \operatorname{d}q \texttt{))} ~=~ \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q</math>
<math>f(p, q) ~=~ pq ~=~ p ~\operatorname{and}~ q \quad \Rightarrow \quad \operatorname{D}f|_{pq} ~=~ \texttt{((} \operatorname{dp} \texttt{)(} \operatorname{d}q \texttt{))} ~=~ \operatorname{d}p ~\operatorname{or}~ \operatorname{d}q</math>
Line 264:
Line 245:
The picture shows the analysis of the inclusive disjunction <math>\texttt{((} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{))}</math> into the following exclusive disjunction:
The picture shows the analysis of the inclusive disjunction <math>\texttt{((} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{))}</math> into the following exclusive disjunction:
−
{| align="center" cellpadding="6" width="90%"
+
{| align="center" cellspacing="10" width="90%"
| align="center" |
| align="center" |
<math>\begin{matrix}
<math>\begin{matrix}