MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
523 bytes removed
, 17:13, 19 June 2009
Line 14: |
Line 14: |
| |} | | |} |
| | | |
− | Written as a string, this is just the concatenation "<math>p~q</math>". | + | Written as a string, this is just the concatenation <math>p~q</math>. |
| | | |
| The proposition <math>pq\!</math> may be taken as a boolean function <math>f(p, q)\!</math> having the abstract type <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B},</math> where <math>\mathbb{B} = \{ 0, 1 \}</math> is read in such a way that <math>0\!</math> means <math>\operatorname{false}</math> and <math>1\!</math> means <math>\operatorname{true}.</math> | | The proposition <math>pq\!</math> may be taken as a boolean function <math>f(p, q)\!</math> having the abstract type <math>f : \mathbb{B} \times \mathbb{B} \to \mathbb{B},</math> where <math>\mathbb{B} = \{ 0, 1 \}</math> is read in such a way that <math>0\!</math> means <math>\operatorname{false}</math> and <math>1\!</math> means <math>\operatorname{true}.</math> |
Line 44: |
Line 44: |
| This expression follows because the expression <math>p + \operatorname{d}p,</math> where the plus sign indicates addition in <math>\mathbb{B},</math> that is, addition modulo 2, and thus corresponds to the exclusive disjunction operation in logic, parses to a graph of the following form: | | This expression follows because the expression <math>p + \operatorname{d}p,</math> where the plus sign indicates addition in <math>\mathbb{B},</math> that is, addition modulo 2, and thus corresponds to the exclusive disjunction operation in logic, parses to a graph of the following form: |
| | | |
− | {| align="center" cellpadding="6" width="90%" | + | {| align="center" cellpadding="10" |
− | | align="center" |
| + | | [[Image:Cactus Graph (P,dP).jpg|500px]] |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | p dp |
| |
− | | o---o |
| |
− | | \ / |
| |
− | | @ | | |
− | | |
| |
− | o-------------------------------------------------o
| |
− | | (p, dp) |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
| |} | | |} |
| | | |