Line 647:
Line 647:
<math>\begin{array}{rcccccc}
<math>\begin{array}{rcccccc}
\operatorname{d}(pq)
\operatorname{d}(pq)
−
& = & p & \cdot & q & \cdot &
+
& = &
+
p & \cdot & q & \cdot &
\texttt{(} \operatorname{d}p \texttt{,} \operatorname{d}q \texttt{)}
\texttt{(} \operatorname{d}p \texttt{,} \operatorname{d}q \texttt{)}
\\[4pt]
\\[4pt]
−
& + & p & \cdot & \texttt{(} q \texttt{)} & \cdot & \operatorname{d}q
+
& + &
+
p & \cdot & \texttt{(} q \texttt{)} & \cdot & \operatorname{d}q
\\[4pt]
\\[4pt]
−
& + & \texttt{(} p \texttt{)} & \cdot & q & \cdot & \operatorname{d}p
+
& + &
+
\texttt{(} p \texttt{)} & \cdot & q & \cdot & \operatorname{d}p
\\[4pt]
\\[4pt]
−
& + & \texttt{(} p \texttt{)} & \cdot & \texttt{(}q \texttt{)} & \cdot & 0
+
& + &
+
\texttt{(} p \texttt{)} & \cdot & \texttt{(}q \texttt{)} & \cdot & 0
\end{array}</math>
\end{array}</math>
|}
|}
Line 666:
Line 670:
<math>\begin{array}{rcccccc}
<math>\begin{array}{rcccccc}
\operatorname{r}(pq)
\operatorname{r}(pq)
−
& = & p & \cdot & q & \cdot &
+
& = &
+
p & \cdot & q & \cdot &
\operatorname{d}p ~ \operatorname{d}q
\operatorname{d}p ~ \operatorname{d}q
\\[4pt]
\\[4pt]
−
& + & p & \cdot & \texttt{(} q \texttt{)} & \cdot &
+
& + &
+
p & \cdot & \texttt{(} q \texttt{)} & \cdot &
\operatorname{d}p ~ \operatorname{d}q
\operatorname{d}p ~ \operatorname{d}q
\\[4pt]
\\[4pt]
−
& + & \texttt{(} p \texttt{)} & \cdot & q & \cdot &
+
& + &
+
\texttt{(} p \texttt{)} & \cdot & q & \cdot &
\operatorname{d}p ~ \operatorname{d}q
\operatorname{d}p ~ \operatorname{d}q
\\[4pt]
\\[4pt]
−
& + & \texttt{(} p \texttt{)} & \cdot & \texttt{(}q \texttt{)} & \cdot &
+
& + &
+
\texttt{(} p \texttt{)} & \cdot & \texttt{(}q \texttt{)} & \cdot &
\operatorname{d}p ~ \operatorname{d}q
\operatorname{d}p ~ \operatorname{d}q
\end{array}</math>
\end{array}</math>
|}
|}