| Line 4,226: | 
Line 4,226: | 
|   | To understand the extended interpretations, that is, the conjunctions of basic and differential features that are being indicated here, it may help to note the following equivalences:  |   | To understand the extended interpretations, that is, the conjunctions of basic and differential features that are being indicated here, it may help to note the following equivalences:  | 
|   |  |   |  | 
| − | <pre>  | + | {| align="center" cellspacing="10" style="text-align:center"  | 
| − |    (dp, dq)   =   dp + dq   =   dp(dq) + (dp)dq
  | + | |  | 
| − |    | + | <math>\begin{matrix}  | 
| − |       dp      =   dp dq  +  dp(dq)
  | + | \texttt{(}  | 
| − |    | + | \operatorname{d}p  | 
| − |       dq      =   dp dq  +  (dp)dq
  | + | \texttt{,}  | 
| − | </pre>  | + | \operatorname{d}q  | 
|   | + | \texttt{)}  | 
|   | + | & = &  | 
|   | + | \texttt{~} \operatorname{d}p \texttt{~}  | 
|   | + | \texttt{(} \operatorname{d}q \texttt{)}  | 
|   | + | & + &  | 
|   | + | \texttt{(} \operatorname{d}p \texttt{)}  | 
|   | + | \texttt{~} \operatorname{d}q \texttt{~}  | 
|   | + | \\[4pt]  | 
|   | + | dp  | 
|   | + | & = &  | 
|   | + | \texttt{~} \operatorname{d}p \texttt{~}  | 
|   | + | \texttt{~} \operatorname{d}q \texttt{~}  | 
|   | + | & + &  | 
|   | + | \texttt{~} \operatorname{d}p \texttt{~}  | 
|   | + | \texttt{(} \operatorname{d}q \texttt{)}  | 
|   | + | \\[4pt]  | 
|   | + | \operatorname{d}q  | 
|   | + | & = &  | 
|   | + | \texttt{~} \operatorname{d}p \texttt{~}  | 
|   | + | \texttt{~} \operatorname{d}q \texttt{~}  | 
|   | + | & + &  | 
|   | + | \texttt{(} \operatorname{d}p \texttt{)}  | 
|   | + | \texttt{~} \operatorname{d}q \texttt{~}  | 
|   | + | \end{matrix}</math>  | 
|   | + | |}  | 
|   |  |   |  | 
|   | Capping the series that analyzes the proposition <math>pq\!</math> in terms of succeeding orders of linear propositions, Figure 26-2 shows the remainder map <math>\operatorname{r}(pq) : \operatorname{E}X \to \mathbb{B},</math> that happens to be linear in pairs of variables.  |   | Capping the series that analyzes the proposition <math>pq\!</math> in terms of succeeding orders of linear propositions, Figure 26-2 shows the remainder map <math>\operatorname{r}(pq) : \operatorname{E}X \to \mathbb{B},</math> that happens to be linear in pairs of variables.  |