Line 4,207:
Line 4,207:
|}
|}
−
<pre>
+
Just to be clear about what's being indicated here, it's a visual way of summarizing the following data:
−
Just to be clear about what's being indicated here,
−
it's a visual way of specifying the following data:
−
d[pq]
+
{| align="center" cellspacing="10" style="text-align:center"
+
|
+
<math>\begin{array}{rcccccc}
+
\operatorname{d}(pq)
+
& = & p & \cdot & q & \cdot &
+
\texttt{(} \operatorname{d}p \texttt{,} \operatorname{d}q \texttt{)}
+
\\[4pt]
+
& + & p & \cdot & \texttt{(} q \texttt{)} & \cdot & \operatorname{d}q
+
\\[4pt]
+
& + & \texttt{(} p \texttt{)} & \cdot & q & \cdot & \operatorname{d}p
+
\\[4pt]
+
& + & \texttt{(} p \texttt{)} & \cdot & \texttt{(}q \texttt{)} & \cdot & 0
+
\end{array}</math>
+
|}
−
=
+
To understand the extended interpretations, that is, the conjunctions of basic and differential features that are being indicated here, it may help to note the following equivalences:
−
−
p q . (dp, dq)
−
−
+
−
−
p (q) . dq
−
−
+
−
−
(p) q . dp
−
−
+
−
−
(p)(q) . 0
−
−
To understand the extended interpretations, that is,
−
the conjunctions of basic and differential features
−
that are being indicated here, it may help to note
−
the following equivalences:
+
<pre>
(dp, dq) = dp + dq = dp(dq) + (dp)dq
(dp, dq) = dp + dq = dp(dq) + (dp)dq
Line 4,239:
Line 4,232:
dq = dp dq + (dp)dq
dq = dp dq + (dp)dq
+
</pre>
−
Capping the series that analyzes the proposition pq
+
Capping the series that analyzes the proposition <math>pq\!</math> in terms of succeeding orders of linear propositions, Figure 26-2 shows the remainder map <math>\operatorname{r}(pq) : \operatorname{E}X \to \mathbb{B},</math> that happens to be linear in pairs of variables.
−
in terms of succeeding orders of linear propositions,
−
Figure 26-2 shows the remainder map r[pq] : EX -> B,
−
that happens to be linear in pairs of variables.
−
</pre>
{| align="center" cellspacing="10" style="text-align:center; width:90%"
{| align="center" cellspacing="10" style="text-align:center; width:90%"
Line 4,291:
Line 4,281:
Reading the arrows off the map produces the following data:
Reading the arrows off the map produces the following data:
+
<pre>
r[pq]
r[pq]
Line 4,308:
Line 4,299:
(p)(q) . dp dq
(p)(q) . dp dq
+
</pre>
−
In short, r[pq] is a constant field,
+
In short, <math>\operatorname{r}(pq)</math> is a constant field, having the value <math>\operatorname{d}p~\operatorname{d}q</math> at each cell.
−
having the value dp dq at each cell.
A more detailed presentation of Differential Logic can be found here:
A more detailed presentation of Differential Logic can be found here:
−
DLOG D. http://stderr.org/pipermail/inquiry/2003-May/thread.html#478
+
* DLOG D. http://stderr.org/pipermail/inquiry/2003-May/thread.html#478
−
DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#553
+
* DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#553
−
DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#571
+
* DLOG D. http://stderr.org/pipermail/inquiry/2003-June/thread.html#571
−
</pre>
==Document History==
==Document History==