Line 4,068: |
Line 4,068: |
| ==Note 25== | | ==Note 25== |
| | | |
− | <pre>
| + | Continuing with the example <math>pq : X \to \mathbb{B},</math> Figure 25-1 shows the enlargement or shift map <math>\operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> in the same style of differential field picture that we drew for the tacit extension <math>\varepsilon (pq) : \operatorname{E}X \to \mathbb{B}.</math> |
− | Staying with the example pq : X -> B, Figure 25-1 shows
| |
− | the enlargement or shift map E[pq] : EX -> B in the same | |
− | style of differential field picture that we drew for the | |
− | tacit extension !e![pq] : EX -> B. | |
| | | |
− | o---------------------------------------------------------------------o
| + | {| align="center" cellspacing="10" style="text-align:center" |
− | | | | + | | [[Image:Field Picture PQ Enlargement Conjunction.jpg|500px]] |
− | | X | | + | |- |
− | | o-------------------o o-------------------o | | + | | <math>\text{Figure 25-1. Enlargement Map}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> |
− | | / \ / \ |
| + | |- |
− | | / P o Q \ | | + | | |
− | | / / \ \ |
| + | <math>\begin{array}{rcccccc} |
− | | / / \ \ |
| + | \operatorname{E}(pq) |
− | | / / \ \ |
| + | & = & |
− | | / / \ \ |
| + | p |
− | | / / \ \ |
| + | & \cdot & |
− | | o o (dp) (dq) o o |
| + | q |
− | | | | o-->--o | | |
| + | & \cdot & |
− | | | | \ / | | |
| + | \texttt{(} \operatorname{d}p \texttt{)} |
− | | | (dp) dq | \ / | dp (dq) | |
| + | \texttt{(} \operatorname{d}q \texttt{)} |
− | | | o----------------->o<-----------------o | |
| + | \\[4pt] |
− | | | | ^ | | |
| + | & + & |
− | | | | | | | |
| + | p |
− | | | | | | | |
| + | & \cdot & |
− | | o o | o o |
| + | \texttt{(} q \texttt{)} |
− | | \ \ | / / |
| + | & \cdot & |
− | | \ \ | / / |
| + | \texttt{(} \operatorname{d}p \texttt{)} |
− | | \ \ | / / |
| + | \texttt{~} \operatorname{d}q \texttt{~} |
− | | \ \ | / / |
| + | \\[4pt] |
− | | \ \|/ / |
| + | & + & |
− | | \ | / |
| + | \texttt{(} p \texttt{)} |
− | | \ /|\ / |
| + | & \cdot & |
− | | o-------------------o | o-------------------o |
| + | q |
− | | | |
| + | & \cdot & |
− | | dp | dq |
| + | \texttt{~} \operatorname{d}p \texttt{~} |
− | | | |
| + | \texttt{(} \operatorname{d}q \texttt{)} |
− | | | |
| + | \\[4pt] |
− | | o |
| + | & + & |
− | | | | + | \texttt{(} p \texttt{)} |
− | o---------------------------------------------------------------------o
| + | & \cdot & |
− | Figure 25-1. Enlargement E[pq] : EX -> B
| + | \texttt{(} q \texttt{)} |
| + | & \cdot & |
| + | \texttt{~} \operatorname{d}p \texttt{~} |
| + | \texttt{~} \operatorname{d}q \texttt{~} |
| + | \end{array}</math> |
| + | |} |
| | | |
− | A very important conceptual transition has just occurred here, | + | A very important conceptual transition has just occurred here, almost tacitly, as it were. Generally speaking, having a set of mathematical objects of compatible types, in this case the two differential fields <math>\varepsilon f</math> and <math>\operatorname{E}f,</math> both of the type <math>\operatorname{E}X \to \mathbb{B},</math> is very useful, because it allows us to consider these fields as integral mathematical objects that can be operated on and combined in the ways that we usually associate with algebras. |
− | almost tacitly, as it were. Generally speaking, having a set | |
− | of mathematical objects of compatible types, in this case the | |
− | two differential fields !e!f and Ef, both of the type EX -> B, | |
− | is very useful, because it allows us to consider these fields | |
− | as integral mathematical objects that can be operated on and | |
− | combined in the ways that we usually associate with algebras. | |
| | | |
− | In this case one notices that the tacit extension !e!f and the | + | In this case one notices that the tacit extension <math>\varepsilon f</math> and the enlargement <math>\operatorname{E}f</math> are in a certain sense dual to each other. The tacit extension <math>\varepsilon f</math> indicates all the arrows out of the region where <math>f\!</math> is true and the enlargement <math>\operatorname{E}f</math> indicates all the arrows into the region where <math>f\!</math> is true. The only arc they have in common is the no-change loop <math>\texttt{(} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{)}</math> at <math>pq.\!</math> If we add the two sets of arcs in mod 2 fashion then the loop of multiplicity 2 zeroes out, leaving the 6 arrows of <math>\operatorname{D}(pq) = \varepsilon(pq) + \operatorname{E}(pq)</math> that are illustrated in Figure 25-2. |
− | enlargement Ef are in a certain sense dual to each other, with | |
− | !e!f indicating all of the arrows out of the region where f is
| |
− | true, and with Ef indicating all of the arrows into the region | |
− | where f is true. The only arc that they have in common is the | |
− | no-change loop (dp)(dq) at pq. If we add the two sets of arcs | |
− | mod 2, then the common loop drops out, leaving the 6 arrows of | |
− | D[pq] = !e![pq] + E[pq] that are illustrated in Figure 25-2. | |
| | | |
− | o---------------------------------------------------------------------o
| + | {| align="center" cellspacing="10" style="text-align:center" |
− | | | | + | | [[Image:Field Picture PQ Difference Conjunction.jpg|500px]] |
− | | X |
| + | |- |
− | | o-------------------o o-------------------o | | + | | <math>\text{Figure 25-2. Difference Map}~ \operatorname{D}(pq) : \operatorname{E}X \to \mathbb{B}</math> |
− | | / \ / \ | | + | |- |
− | | / P o Q \ |
| + | | |
− | | / / \ \ |
| + | <math>\begin{array}{rcccccc} |
− | | / / \ \ | | + | \operatorname{D}(pq) |
− | | / / \ \ |
| + | & = & |
− | | / / \ \ |
| + | p |
− | | / / \ \ |
| + | & \cdot & |
− | | o o o o |
| + | q |
− | | | | | | |
| + | & \cdot & |
− | | | | | | |
| + | \texttt{(} |
− | | | (dp) dq | | dp (dq) | |
| + | \texttt{(} \operatorname{d}p \texttt{)} |
− | | | o<---------------->o<---------------->o | |
| + | \texttt{(} \operatorname{d}q \texttt{)} |
− | | | | ^ | | |
| + | \texttt{)} |
− | | | | | | | |
| + | \\[4pt] |
− | | | | | | | |
| + | & + & |
− | | o o | o o |
| + | p |
− | | \ \ | / / |
| + | & \cdot & |
− | | \ \ | / / |
| + | \texttt{(} q \texttt{)} |
− | | \ \ | / / |
| + | & \cdot & |
− | | \ \ | / / |
| + | \texttt{~} |
− | | \ \|/ / |
| + | \texttt{(} \operatorname{d}p \texttt{)} |
− | | \ | / |
| + | \texttt{~} \operatorname{d}q \texttt{~} |
− | | \ /|\ / |
| + | \texttt{~} |
− | | o-------------------o | o-------------------o |
| + | \\[4pt] |
− | | | |
| + | & + & |
− | | dp | dq |
| + | \texttt{(} p \texttt{)} |
− | | | |
| + | & \cdot & |
− | | v |
| + | q |
− | | o |
| + | & \cdot & |
− | | |
| + | \texttt{~} |
− | o---------------------------------------------------------------------o
| + | \texttt{~} \operatorname{d}p \texttt{~} |
− | Figure 25-2. Difference Map D[pq] : EX -> B
| + | \texttt{(} \operatorname{d}q \texttt{)} |
− | | + | \texttt{~} |
− | The differential features of D[pq] may be collected cell by cell of
| + | \\[4pt] |
− | the underlying universe X% = [p, q] to give the following expansion:
| + | & + & |
− | | + | \texttt{(} p \texttt{)} |
− | D[pq]
| + | & \cdot & |
− | | + | \texttt{(}q \texttt{)} |
− | =
| + | & \cdot & |
− | | + | \texttt{~} |
− | p q . ((dp)(dq))
| + | \texttt{~} \operatorname{d}p \texttt{~} |
− | | + | \texttt{~} \operatorname{d}q \texttt{~} |
− | +
| + | \texttt{~} |
− | | + | \end{array}</math> |
− | p (q) . (dp) dq
| + | |} |
− | | |
− | +
| |
− | | |
− | (p) q . dp (dq)
| |
− | | |
− | +
| |
− | | |
− | (p)(q) . dp dq
| |
− | </pre> | |
| | | |
| ==Note 26== | | ==Note 26== |