MyWikiBiz, Author Your Legacy — Sunday February 16, 2025
Jump to navigationJump to search
2,281 bytes removed
, 15:19, 17 June 2009
Line 4,001: |
Line 4,001: |
| | [[Image:Field Picture PQ Enlargement Conjunction.jpg|500px]] | | | [[Image:Field Picture PQ Enlargement Conjunction.jpg|500px]] |
| |- | | |- |
− | | <math>\text{Figure 25-1. Enlargement}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> | + | | <math>\text{Figure 25-1. Enlargement Map}~ \operatorname{E}(pq) : \operatorname{E}X \to \mathbb{B}</math> |
| |- | | |- |
| | | | | |
Line 4,020: |
Line 4,020: |
| In this case one notices that the tacit extension <math>\varepsilon f</math> and the enlargement <math>\operatorname{E}f</math> are in a certain sense dual to each other. The tacit extension <math>\varepsilon f</math> indicates all the arrows out of the region where <math>f\!</math> is true and the enlargement <math>\operatorname{E}f</math> indicates all the arrows into the region where <math>f\!</math> is true. The only arc they have in common is the no-change loop <math>\texttt{(} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{)}</math> at <math>pq.\!</math> If we add the two sets of arcs in mod 2 fashion then the loop of multiplicity 2 zeroes out, leaving the 6 arrows of <math>\operatorname{D}(pq) = \varepsilon(pq) + \operatorname{E}(pq)</math> that are illustrated in Figure 25-2. | | In this case one notices that the tacit extension <math>\varepsilon f</math> and the enlargement <math>\operatorname{E}f</math> are in a certain sense dual to each other. The tacit extension <math>\varepsilon f</math> indicates all the arrows out of the region where <math>f\!</math> is true and the enlargement <math>\operatorname{E}f</math> indicates all the arrows into the region where <math>f\!</math> is true. The only arc they have in common is the no-change loop <math>\texttt{(} \operatorname{d}p \texttt{)(} \operatorname{d}q \texttt{)}</math> at <math>pq.\!</math> If we add the two sets of arcs in mod 2 fashion then the loop of multiplicity 2 zeroes out, leaving the 6 arrows of <math>\operatorname{D}(pq) = \varepsilon(pq) + \operatorname{E}(pq)</math> that are illustrated in Figure 25-2. |
| | | |
− | {| align="center" cellspacing="10" style="text-align:center; width:90%" | + | {| align="center" cellspacing="10" style="text-align:center" |
| + | | [[Image:Field Picture PQ Difference Conjunction.jpg|500px]] |
| + | |- |
| + | | <math>\text{Figure 25-2. Difference Map}~ \operatorname{D}(pq) : \operatorname{E}X \to \mathbb{B}</math> |
| + | |- |
| | | | | |
− | <pre> | + | <math>\begin{array}{rcccccc} |
− | o---------------------------------------------------------------------o
| + | \operatorname{D}(pq) |
− | | |
| + | & = & p & \cdot & q & \cdot & ((\operatorname{d}p)(\operatorname{d}q)) |
− | | X |
| + | \\[4pt] |
− | | o-------------------o o-------------------o |
| + | & + & p & \cdot & (q) & \cdot & ~(\operatorname{d}p)~\operatorname{d}q~~ |
− | | / \ / \ |
| + | \\[4pt] |
− | | / P o Q \ |
| + | & + & (p) & \cdot & q & \cdot & ~~\operatorname{d}p~(\operatorname{d}q)~ |
− | | / / \ \ |
| + | \\[4pt] |
− | | / / \ \ |
| + | & + & (p) & \cdot & (q) & \cdot & ~~\operatorname{d}p~~\operatorname{d}q~~ |
− | | / / \ \ |
| + | \end{array}</math> |
− | | / / \ \ |
| |
− | | / / \ \ |
| |
− | | o o o o |
| |
− | | | | | | |
| |
− | | | | | | |
| |
− | | | (dp) dq | | dp (dq) | |
| |
− | | | o<---------------->o<---------------->o | |
| |
− | | | | ^ | | |
| |
− | | | | | | | |
| |
− | | | | | | | |
| |
− | | o o | o o |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \|/ / |
| |
− | | \ | / |
| |
− | | \ /|\ / |
| |
− | | o-------------------o | o-------------------o |
| |
− | | | |
| |
− | | dp | dq |
| |
− | | | |
| |
− | | v |
| |
− | | o |
| |
− | | |
| |
− | o---------------------------------------------------------------------o
| |
− | Figure 25-2. Difference Map D[pq] : EX -> B
| |
− | </pre> | |
| |} | | |} |
− |
| |
− | <pre>
| |
− | The differential features of D[pq] may be collected cell by cell of
| |
− | the underlying universe X% = [p, q] to give the following expansion:
| |
− |
| |
− | D[pq]
| |
− |
| |
− | =
| |
− |
| |
− | p q . ((dp)(dq))
| |
− |
| |
− | +
| |
− |
| |
− | p (q) . (dp) dq
| |
− |
| |
− | +
| |
− |
| |
− | (p) q . dp (dq)
| |
− |
| |
− | +
| |
− |
| |
− | (p)(q) . dp dq
| |
− | </pre>
| |
| | | |
| ==Note 26== | | ==Note 26== |