Line 3,963: |
Line 3,963: |
| ==Note 24== | | ==Note 24== |
| | | |
− | <pre>
| + | Now that we've introduced the field picture as an aid to thinking about propositions and their analytic series, a very pleasing way of picturing the relationships among a proposition <math>f : X \to \mathbb{B},</math> its enlargement or shift map <math>\operatorname{E}f : \operatorname{E}X \to \mathbb{B},</math> and its difference map <math>\operatorname{D}f : \operatorname{E}X \to \mathbb{B}</math> can now be drawn. |
− | Now that we've introduced the field picture for thinking about | |
− | propositions and their analytic series, a very pleasing way of | |
− | picturing the relationship among a proposition f : X -> B, its | |
− | enlargement or shift map Ef : EX -> B, and its difference map | |
− | Df : EX -> B can now be drawn.
| |
| | | |
− | To illustrate this possibility, let's return to the differential | + | To illustrate this possibility, let's return to the differential analysis of the conjunctive proposition <math>f(p, q) = pq,\!</math> giving the development a slightly different twist at the appropriate point. |
− | analysis of the conjunctive proposition f<p, q> = pq, giving the | |
− | development a slightly different twist at the appropriate point. | |
| | | |
− | Figure 24-1 shows the proposition pq once again, which we now view | + | Figure 24-1 shows the proposition <math>pq\!</math> once again, which we now view as a scalar field — analogous to a ''potential hill'' in physics, but in logic tantamount to a ''potential plateau'' — where the shaded region indicates an elevation of 1 and the unshaded region indicates an elevation of 0. |
− | as a scalar field, in effect, a potential "plateau" of elevation 1 | |
− | over the shaded region, with an elevation of 0 everywhere else.
| |
| | | |
− | o---------------------------------------------------------------------o
| + | {| align="center" cellspacing="10" style="text-align:center" |
− | | | | + | | [[Image:Field Picture PQ Conjunction.jpg|500px]] |
− | | X |
| + | |- |
− | | o-------------------o o-------------------o | | + | | <math>\text{Figure 24-1. Proposition}~ pq : X \to \mathbb{B}</math> |
− | | / \ / \ | | + | |} |
− | | / o \ |
| |
− | | / /%\ \ |
| |
− | | / /%%%\ \ |
| |
− | | / /%%%%%\ \ |
| |
− | | / /%%%%%%%\ \ |
| |
− | | / /%%%%%%%%%\ \ |
| |
− | | o o%%%%%%%%%%%o o |
| |
− | | | |%%%%%%%%%%%| | |
| |
− | | | |%%%%%%%%%%%| | |
| |
− | | | |%%%%%%%%%%%| | |
| |
− | | | P |%%%%%%%%%%%| Q | |
| |
− | | | |%%%%%%%%%%%| | |
| |
− | | | |%%%%%%%%%%%| | |
| |
− | | | |%%%%%%%%%%%| | |
| |
− | | o o%%%%%%%%%%%o o |
| |
− | | \ \%%%%%%%%%/ / |
| |
− | | \ \%%%%%%%/ / |
| |
− | | \ \%%%%%/ / |
| |
− | | \ \%%%/ / |
| |
− | | \ \%/ / |
| |
− | | \ o / |
| |
− | | \ / \ / |
| |
− | | o-------------------o o-------------------o |
| |
− | | |
| |
− | | |
| |
− | o---------------------------------------------------------------------o
| |
− | Figure 24-1. Proposition pq : X -> B | |
| | | |
− | Given any proposition f : X -> B, the "tacit extension" of f to EX | + | Given a proposition <math>f : X \to \mathbb{B},</math> the ''tacit extension'' of <math>f\!</math> to <math>\operatorname{E}X</math> is denoted <math>\varepsilon f : \operatorname{E}X \to \mathbb{B}</math> and defined by the equation <math>\varepsilon f = f,</math> so it's really just the same proposition residing in a bigger universe. Tacit extensions formalize the intuitive idea that a function on a particular set of variables can be extended to a function on a superset of those variables in such a way that the new function obeys the same constraints on the old variables, with a "don't care" condition on the new variables. |
− | is notated !e!f : EX -> B and defined by the equation !e!f = f, so | |
− | it's really just the same proposition living in a bigger universe. | |
| | | |
− | Tacit extensions formalize the intuitive idea that a new function
| + | Figure 24-2 shows the tacit extension of the scalar field <math>pq : X \to \mathbb{B}</math> to the differential field <math>\varepsilon (pq) : \operatorname{E}X \to \mathbb{B}.</math> |
− | is related to an old function in such a way that it obeys the same
| |
− | constraints on the old variables, with a "don't care" condition on
| |
− | the new variables.
| |
| | | |
− | Figure 24-2 illustrates the "tacit extension" of the proposition
| + | {| align="center" cellspacing="10" style="text-align:center" |
− | or scalar field f = pq : X -> B to give the extended proposition
| + | | [[Image:Field Picture PQ Tacit Extension Conjunction.jpg|500px]] |
− | or differential field that we notate as !e!f = !e![pq] : EX -> B.
| + | |- |
− | | + | | <math>\text{Figure 24-2. Tacit Extension}~ \varepsilon (pq) : \operatorname{E}X \to \mathbb{B}</math> |
− | o---------------------------------------------------------------------o
| + | |- |
− | | |
| + | | |
− | | X | | + | <math>\begin{array}{rcccccc} |
− | | o-------------------o o-------------------o |
| + | \varepsilon (pq) |
− | | / \ / \ | | + | & = & p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q) |
− | | / P o Q \ |
| + | \\[4pt] |
− | | / / \ \ |
| + | & + & p & \cdot & q & \cdot & (\operatorname{d}p)~\operatorname{d}q~ |
− | | / / \ \ |
| + | \\[4pt] |
− | | / / \ \ |
| + | & + & p & \cdot & q & \cdot & ~\operatorname{d}p~(\operatorname{d}q) |
− | | / / \ \ | | + | \\[4pt] |
− | | / / \ \ |
| + | & + & p & \cdot & q & \cdot & ~\operatorname{d}p~~\operatorname{d}q~ |
− | | o o (dp) (dq) o o |
| + | \end{array}</math> |
− | | | | o-->--o | | |
| + | |} |
− | | | | \ / | | |
| |
− | | | (dp) dq | \ / | dp (dq) | |
| |
− | | | o<-----------------o----------------->o | |
| |
− | | | | | | | |
| |
− | | | | | | | |
| |
− | | | | | | | |
| |
− | | o o | o o |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \ | / / |
| |
− | | \ \|/ / |
| |
− | | \ | / |
| |
− | | \ /|\ / |
| |
− | | o-------------------o | o-------------------o |
| |
− | | | |
| |
− | | dp | dq |
| |
− | | | |
| |
− | | v |
| |
− | | o |
| |
− | | |
| |
− | o---------------------------------------------------------------------o
| |
− | Figure 24-2. Tacit Extension !e![pq] : EX -> B
| |
− | | |
− | Thus we have a pictorial way of visualizing the following data:
| |
− | | |
− | !e![pq]
| |
− | | |
− | =
| |
− | | |
− | p q . dp dq
| |
− | | |
− | +
| |
− | | |
− | p q . dp (dq)
| |
− | | |
− | +
| |
− | | |
− | p q . (dp) dq
| |
− | | |
− | +
| |
− | | |
− | p q . (dp)(dq)
| |
− | </pre> | |
| | | |
| ==Note 25== | | ==Note 25== |