Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
Line 4,004: Line 4,004:  
|}
 
|}
   −
<pre>
+
Given any proposition <math>f : X \to \mathbb{B},</math> the ''tacit extension'' of <math>f\!</math> to <math>\operatorname{E}X</math> is notated <math>\varepsilon f : \operatorname{E}X \to \mathbb{B}</math> and defined by the equation <math>\varepsilon f = f,</math> so it's really just the same proposition living in a bigger universe.
Given any proposition f : X -> B, the "tacit extension" of f to EX
  −
is notated !e!f : EX -> B and defined by the equation !e!f = f, so
  −
it's really just the same proposition living in a bigger universe.
     −
Tacit extensions formalize the intuitive idea that a new function
+
Tacit extensions formalize the intuitive idea that a new function is related to an old function in such a way that it obeys the same constraints on the old variables, with a "don't care" condition on the new variables.
is related to an old function in such a way that it obeys the same
  −
constraints on the old variables, with a "don't care" condition on
  −
the new variables.
     −
Figure 24-2 illustrates the "tacit extension" of the proposition
+
Figure&nbsp;24-2 illustrates the tacit extension of the proposition or scalar field <math>f = pq : X \to \mathbb{B}</math> to give the extended proposition or differential field that we notate as <math>\varepsilon f = \varepsilon (pq) : \operatorname{E}X \to \mathbb{B}.</math>
or scalar field f = pq : X -> B to give the extended proposition
  −
or differential field that we notate as !e!f = !e![pq] : EX -> B.
  −
</pre>
      
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 
{| align="center" cellspacing="10" style="text-align:center; width:90%"
12,080

edits

Navigation menu