Changes

MyWikiBiz, Author Your Legacy — Tuesday April 30, 2024
Jump to navigationJump to search
Line 3,460: Line 3,460:  
==Note 19==
 
==Note 19==
    +
To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table:
 +
 +
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 
<pre>
 
<pre>
To construct the regular representations of S_3,
+
Symmetric Group S_3
we pick up from the data of its operation table,
+
o-------------------------------------------------o
DAL 17, Table 17-b, at either one of these sites:
+
|                                                |
 
+
|                        ^                        |
http://stderr.org/pipermail/inquiry/2004-May/001419.html
+
|                    e / \ e                    |
http://forum.wolframscience.com/showthread.php?postid=1321#post1321
+
|                      /  \                      |
 
+
|                    /  e  \                    |
Just by way of staying clear about what we are doing,
+
|                  f / \  / \ f                  |
let's return to the recipe that we worked out before:
+
|                  /  \ /  \                  |
 
+
|                  /  f  \  f  \                  |
It is part of the definition of a group that the 3-adic
+
|              g / \  / \  / \ g              |
relation L c G^3 is actually a function L : G x G -> G.
+
|                /  \ /  \ /  \                |
It is from this functional perspective that we can see
+
|              /  g  \  g  \  g  \              |
an easy way to derive the two regular representations.
+
|            h / \  / \  / \  / \ h            |
 
+
|            /  \ /  \ /  \ /  \            |
Since we have a function of the type L : G x G -> G,
+
|            /  h  \  e  \  e  \  h  \            |
we can define a couple of substitution operators:
+
|        i / \  / \  / \  / \  / \ i        |
 
+
|          /  \ /  \ /  \ /  \ /  \          |
1. Sub(x, <_, y>) puts any specified x into
+
|        /  i  \  i  \  f  \  j  \  i  \        |
    the empty slot of the rheme <_, y>, with
+
|      j / \  / \  / \  / \  / \  / \ j      |
    the effect of producing the saturated
+
|      /  \ /  \ /  \ /  \ /  \ /  \      |
    rheme <x, y> that evaluates to xy.
+
|      (  j  \  j  \  j  \  i  \  h  \  j  )      |
 +
|      \  / / / / / /       |
 +
|        \ /   \ /   \ /   \ /  \ /  \ /        |
 +
|        \  h  \  h  \  e  \  j  \  i  /        |
 +
|          \  / \  / \  / \  / \  /          |
 +
|          \ /  \ /  \ /  \ /  \ /          |
 +
|            \  i  \  g  \  f  \  h  /            |
 +
|            \  / \  / \  / \  /            |
 +
|              \ /  \ /  \ /  \ /              |
 +
|              \  f  \  e  \  g  /              |
 +
|                \  / \  / \  /                |
 +
|                \ /  \ /  \ /                |
 +
|                  \  g  \  f  /                  |
 +
|                  \  / \  /                  |
 +
|                    \ /  \ /                    |
 +
|                    \ e  /                    |
 +
|                      \  /                      |
 +
|                      \ /                      |
 +
|                        v                        |
 +
|                                                |
 +
o-------------------------------------------------o
 +
</pre>
 +
|}
   −
2.  Sub(x, <y, _>) puts any specified x into
+
Just by way of staying clear about what we are doing, let's return to the recipe that we worked out before:
    the empty slot of the rheme <y, _>, with
  −
    the effect of producing the saturated
  −
    rheme <y, x> that evaluates to yx.
     −
In (1), we consider the effects of each x in its
+
It is part of the definition of a group that the 3-adic relation <math>L \subseteq G^3</math> is actually a function <math>L : G \times G \to G.</math> It is from this functional perspective that we can see an easy way to derive the two regular representations.
practical bearing on contexts of the form <_, y>,
  −
as y ranges over G, and the effects are such that
  −
x takes <_, y> into xy, for y in G, all of which
  −
is summarily notated as x = {<y : xy> : y in G}.
  −
The pairs <y : xy> can be found by picking an x
  −
from the left margin of the group operation table
  −
and considering its effects on each y in turn as
  −
these run along the right margin. This produces
  −
the regular ante-representation of S_3, like so:
     −
  e  =  e:e  +  f:f  +  g:g  +  h:h  +  i:i  +  j:j
+
Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators:
   −
  f  =   e:f  +  f:g  +  g:e  +  h:j  +  i:h  +  j:i
+
{| align="center" cellpadding="6" width="90%"
 +
| valign="top" | 1.
 +
| <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math>
 +
|-
 +
| valign="top" | 2.
 +
| <math>\operatorname{Sub}(x, (y, \underline{~~}))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(y, \underline{~~}),</math> with the effect of producing the saturated rheme <math>(y, x)\!</math> that evaluates to <math>yx.\!</math>
 +
|}
   −
  g  =   e:g +  f:e  +  g:f  +  h:i  +  i:j  + j:h
+
In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math> The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin. This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so:
   −
  h   =   e:h + f:i + g:j + h:e + i:f + j:g
+
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{array}{*{13}{c}}
 +
\operatorname{e}
 +
& = & \operatorname{e}\!:\!\operatorname{e}
 +
& + & \operatorname{f}\!:\!\operatorname{f}
 +
& + & \operatorname{g}\!:\!\operatorname{g}
 +
& + & \operatorname{h}\!:\!\operatorname{h}
 +
& + & \operatorname{i}\!:\!\operatorname{i}
 +
& + & \operatorname{j}\!:\!\operatorname{j}
 +
\\[4pt]
 +
\operatorname{f}
 +
& = & \operatorname{e}\!:\!\operatorname{f}
 +
& + & \operatorname{f}\!:\!\operatorname{g}
 +
& + & \operatorname{g}\!:\!\operatorname{e}
 +
& + & \operatorname{h}\!:\!\operatorname{j}
 +
& + & \operatorname{i}\!:\!\operatorname{h}
 +
& + & \operatorname{j}\!:\!\operatorname{i}
 +
\\[4pt]
 +
\operatorname{g}
 +
& = & \operatorname{e}\!:\!\operatorname{g}
 +
& + & \operatorname{f}\!:\!\operatorname{e}
 +
& + & \operatorname{g}\!:\!\operatorname{f}
 +
& + & \operatorname{h}\!:\!\operatorname{i}
 +
& + & \operatorname{i}\!:\!\operatorname{j}
 +
& + & \operatorname{j}\!:\!\operatorname{h}
 +
\\[4pt]
 +
\operatorname{h}
 +
& = & \operatorname{e}\!:\!\operatorname{h}
 +
& + & \operatorname{f}\!:\!\operatorname{i}
 +
& + & \operatorname{g}\!:\!\operatorname{j}
 +
& + & \operatorname{h}\!:\!\operatorname{e}
 +
& + & \operatorname{i}\!:\!\operatorname{f}
 +
& + & \operatorname{j}\!:\!\operatorname{g}
 +
\\[4pt]
 +
\operatorname{i}
 +
& = & \operatorname{e}\!:\!\operatorname{i}
 +
& + & \operatorname{f}\!:\!\operatorname{j}
 +
& + & \operatorname{g}\!:\!\operatorname{h}
 +
& + & \operatorname{h}\!:\!\operatorname{g}
 +
& + & \operatorname{i}\!:\!\operatorname{e}
 +
& + & \operatorname{j}\!:\!\operatorname{f}
 +
\\[4pt]
 +
\operatorname{j}
 +
& = & \operatorname{e}\!:\!\operatorname{j}
 +
& + & \operatorname{f}\!:\!\operatorname{h}
 +
& + & \operatorname{g}\!:\!\operatorname{i}
 +
& + & \operatorname{h}\!:\!\operatorname{f}
 +
& + & \operatorname{i}\!:\!\operatorname{g}
 +
& + & \operatorname{j}\!:\!\operatorname{e}
 +
\end{array}</math>
 +
|}
   −
  i  =   e:i +  f:j  +  g:h  +  h:g  +  i:e  + j:f
+
In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math> The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin. This produces the ''regular post-representation'' of <math>S_3,\!</math> like so:
   −
  j   =   e:j + f:h + g:i + h:f + i:g + j:e
+
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{array}{*{13}{c}}
 +
\operatorname{e}
 +
& = & \operatorname{e}\!:\!\operatorname{e}
 +
& + & \operatorname{f}\!:\!\operatorname{f}
 +
& + & \operatorname{g}\!:\!\operatorname{g}
 +
& + & \operatorname{h}\!:\!\operatorname{h}
 +
& + & \operatorname{i}\!:\!\operatorname{i}
 +
& + & \operatorname{j}\!:\!\operatorname{j}
 +
\\[4pt]
 +
\operatorname{f}
 +
& = & \operatorname{e}\!:\!\operatorname{f}
 +
& + & \operatorname{f}\!:\!\operatorname{g}
 +
& + & \operatorname{g}\!:\!\operatorname{e}
 +
& + & \operatorname{h}\!:\!\operatorname{i}
 +
& + & \operatorname{i}\!:\!\operatorname{j}
 +
& + & \operatorname{j}\!:\!\operatorname{h}
 +
\\[4pt]
 +
\operatorname{g}
 +
& = & \operatorname{e}\!:\!\operatorname{g}
 +
& + & \operatorname{f}\!:\!\operatorname{e}
 +
& + & \operatorname{g}\!:\!\operatorname{f}
 +
& + & \operatorname{h}\!:\!\operatorname{j}
 +
& + & \operatorname{i}\!:\!\operatorname{h}
 +
& + & \operatorname{j}\!:\!\operatorname{i}
 +
\\[4pt]
 +
\operatorname{h}
 +
& = & \operatorname{e}\!:\!\operatorname{h}
 +
& + & \operatorname{f}\!:\!\operatorname{j}
 +
& + & \operatorname{g}\!:\!\operatorname{i}
 +
& + & \operatorname{h}\!:\!\operatorname{e}
 +
& + & \operatorname{i}\!:\!\operatorname{g}
 +
& + & \operatorname{j}\!:\!\operatorname{f}
 +
\\[4pt]
 +
\operatorname{i}
 +
& = & \operatorname{e}\!:\!\operatorname{i}
 +
& + & \operatorname{f}\!:\!\operatorname{h}
 +
& + & \operatorname{g}\!:\!\operatorname{j}
 +
& + & \operatorname{h}\!:\!\operatorname{f}
 +
& + & \operatorname{i}\!:\!\operatorname{e}
 +
& + & \operatorname{j}\!:\!\operatorname{g}
 +
\\[4pt]
 +
\operatorname{j}
 +
& = & \operatorname{e}\!:\!\operatorname{j}
 +
& + & \operatorname{f}\!:\!\operatorname{i}
 +
& + & \operatorname{g}\!:\!\operatorname{h}
 +
& + & \operatorname{h}\!:\!\operatorname{g}
 +
& + & \operatorname{i}\!:\!\operatorname{f}
 +
& + & \operatorname{j}\!:\!\operatorname{e}
 +
\end{array}</math>
 +
|}
   −
In (2), we consider the effects of each x in its
+
If the ante-rep looks different from the post-rep, it is just as it should be, as <math>S_3\!</math> is non-abelian (non-commutative), and so the two representations differ in the details of their practical effects, though, of course, being representations of the same abstract group, they must be isomorphic.
practical bearing on contexts of the form <y, _>,
  −
as y ranges over G, and the effects are such that
  −
x takes <y, _> into yx, for y in G, all of which
  −
is summarily notated as x = {<y : yx> : y in G}.
  −
The pairs <y : yx> can be found by picking an x
  −
on the right margin of the group operation table
  −
and considering its effects on each y in turn as
  −
these run along the left margin.  This generates
  −
the regular post-representation of S_3, like so:
  −
 
  −
  e  =  e:e  +  f:f  +  g:g  +  h:h  +  i:i  +  j:j
  −
 
  −
  f  =  e:f  +  f:g  +  g:e  +  h:i  +  i:j  +  j:h
  −
 
  −
  g  =  e:g  +  f:e  +  g:f  +  h:j  +  i:h  +  j:i
  −
 
  −
  h  =  e:h  +  f:j  +  g:i  +  h:e  +  i:g  +  j:f
  −
 
  −
  i  =  e:i  +  f:h  +  g:j  +  h:f  +  i:e  +  j:g
  −
 
  −
  j  =  e:j  +  f:i  +  g:h  +  h:g  +  i:f  +  j:e
  −
 
  −
If the ante-rep looks different from the post-rep,
  −
it is just as it should be, as S_3 is non-abelian
  −
(non-commutative), and so the two representations
  −
differ in the details of their practical effects,
  −
though, of course, being representations of the
  −
same abstract group, they must be isomorphic.
  −
</pre>
      
==Note 20==
 
==Note 20==
12,080

edits

Navigation menu