Line 3,460: |
Line 3,460: |
| ==Note 19== | | ==Note 19== |
| | | |
| + | To construct the regular representations of <math>S_3,\!</math> we begin with the data of its operation table: |
| + | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| <pre> | | <pre> |
− | To construct the regular representations of S_3,
| + | Symmetric Group S_3 |
− | we pick up from the data of its operation table,
| + | o-------------------------------------------------o |
− | DAL 17, Table 17-b, at either one of these sites:
| + | | | |
− | | + | | ^ | |
− | http://stderr.org/pipermail/inquiry/2004-May/001419.html
| + | | e / \ e | |
− | http://forum.wolframscience.com/showthread.php?postid=1321#post1321
| + | | / \ | |
− | | + | | / e \ | |
− | Just by way of staying clear about what we are doing,
| + | | f / \ / \ f | |
− | let's return to the recipe that we worked out before:
| + | | / \ / \ | |
− | | + | | / f \ f \ | |
− | It is part of the definition of a group that the 3-adic
| + | | g / \ / \ / \ g | |
− | relation L c G^3 is actually a function L : G x G -> G.
| + | | / \ / \ / \ | |
− | It is from this functional perspective that we can see
| + | | / g \ g \ g \ | |
− | an easy way to derive the two regular representations.
| + | | h / \ / \ / \ / \ h | |
− | | + | | / \ / \ / \ / \ | |
− | Since we have a function of the type L : G x G -> G,
| + | | / h \ e \ e \ h \ | |
− | we can define a couple of substitution operators:
| + | | i / \ / \ / \ / \ / \ i | |
− | | + | | / \ / \ / \ / \ / \ | |
− | 1. Sub(x, <_, y>) puts any specified x into
| + | | / i \ i \ f \ j \ i \ | |
− | the empty slot of the rheme <_, y>, with
| + | | j / \ / \ / \ / \ / \ / \ j | |
− | the effect of producing the saturated
| + | | / \ / \ / \ / \ / \ / \ | |
− | rheme <x, y> that evaluates to xy.
| + | | ( j \ j \ j \ i \ h \ j ) | |
| + | | \ / \ / \ / \ / \ / \ / | |
| + | | \ / \ / \ / \ / \ / \ / | |
| + | | \ h \ h \ e \ j \ i / | |
| + | | \ / \ / \ / \ / \ / | |
| + | | \ / \ / \ / \ / \ / | |
| + | | \ i \ g \ f \ h / | |
| + | | \ / \ / \ / \ / | |
| + | | \ / \ / \ / \ / | |
| + | | \ f \ e \ g / | |
| + | | \ / \ / \ / | |
| + | | \ / \ / \ / | |
| + | | \ g \ f / | |
| + | | \ / \ / | |
| + | | \ / \ / | |
| + | | \ e / | |
| + | | \ / | |
| + | | \ / | |
| + | | v | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |} |
| | | |
− | 2. Sub(x, <y, _>) puts any specified x into
| + | Just by way of staying clear about what we are doing, let's return to the recipe that we worked out before: |
− | the empty slot of the rheme <y, _>, with
| |
− | the effect of producing the saturated
| |
− | rheme <y, x> that evaluates to yx.
| |
| | | |
− | In (1), we consider the effects of each x in its
| + | It is part of the definition of a group that the 3-adic relation <math>L \subseteq G^3</math> is actually a function <math>L : G \times G \to G.</math> It is from this functional perspective that we can see an easy way to derive the two regular representations. |
− | practical bearing on contexts of the form <_, y>,
| |
− | as y ranges over G, and the effects are such that
| |
− | x takes <_, y> into xy, for y in G, all of which
| |
− | is summarily notated as x = {<y : xy> : y in G}. | |
− | The pairs <y : xy> can be found by picking an x
| |
− | from the left margin of the group operation table
| |
− | and considering its effects on each y in turn as
| |
− | these run along the right margin. This produces
| |
− | the regular ante-representation of S_3, like so:
| |
| | | |
− | e = e:e + f:f + g:g + h:h + i:i + j:j
| + | Since we have a function of the type <math>L : G \times G \to G,</math> we can define a couple of substitution operators: |
| | | |
− | f = e:f + f:g + g:e + h:j + i:h + j:i
| + | {| align="center" cellpadding="6" width="90%" |
| + | | valign="top" | 1. |
| + | | <math>\operatorname{Sub}(x, (\underline{~~}, y))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(\underline{~~}, y),</math> with the effect of producing the saturated rheme <math>(x, y)\!</math> that evaluates to <math>xy.\!</math> |
| + | |- |
| + | | valign="top" | 2. |
| + | | <math>\operatorname{Sub}(x, (y, \underline{~~}))</math> puts any specified <math>x\!</math> into the empty slot of the rheme <math>(y, \underline{~~}),</math> with the effect of producing the saturated rheme <math>(y, x)\!</math> that evaluates to <math>yx.\!</math> |
| + | |} |
| | | |
− | g = e:g + f:e + g:f + h:i + i:j + j:h
| + | In (1) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(\underline{~~}, y),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(\underline{~~}, y)</math> into <math>xy,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : xy) ~|~ y \in G \}.</math> The pairs <math>(y : xy)\!</math> can be found by picking an <math>x\!</math> from the left margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the right margin. This produces the ''regular ante-representation'' of <math>S_3,\!</math> like so: |
| | | |
− | h = e:h + f:i + g:j + h:e + i:f + j:g
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| + | <math>\begin{array}{*{13}{c}} |
| + | \operatorname{e} |
| + | & = & \operatorname{e}\!:\!\operatorname{e} |
| + | & + & \operatorname{f}\!:\!\operatorname{f} |
| + | & + & \operatorname{g}\!:\!\operatorname{g} |
| + | & + & \operatorname{h}\!:\!\operatorname{h} |
| + | & + & \operatorname{i}\!:\!\operatorname{i} |
| + | & + & \operatorname{j}\!:\!\operatorname{j} |
| + | \\[4pt] |
| + | \operatorname{f} |
| + | & = & \operatorname{e}\!:\!\operatorname{f} |
| + | & + & \operatorname{f}\!:\!\operatorname{g} |
| + | & + & \operatorname{g}\!:\!\operatorname{e} |
| + | & + & \operatorname{h}\!:\!\operatorname{j} |
| + | & + & \operatorname{i}\!:\!\operatorname{h} |
| + | & + & \operatorname{j}\!:\!\operatorname{i} |
| + | \\[4pt] |
| + | \operatorname{g} |
| + | & = & \operatorname{e}\!:\!\operatorname{g} |
| + | & + & \operatorname{f}\!:\!\operatorname{e} |
| + | & + & \operatorname{g}\!:\!\operatorname{f} |
| + | & + & \operatorname{h}\!:\!\operatorname{i} |
| + | & + & \operatorname{i}\!:\!\operatorname{j} |
| + | & + & \operatorname{j}\!:\!\operatorname{h} |
| + | \\[4pt] |
| + | \operatorname{h} |
| + | & = & \operatorname{e}\!:\!\operatorname{h} |
| + | & + & \operatorname{f}\!:\!\operatorname{i} |
| + | & + & \operatorname{g}\!:\!\operatorname{j} |
| + | & + & \operatorname{h}\!:\!\operatorname{e} |
| + | & + & \operatorname{i}\!:\!\operatorname{f} |
| + | & + & \operatorname{j}\!:\!\operatorname{g} |
| + | \\[4pt] |
| + | \operatorname{i} |
| + | & = & \operatorname{e}\!:\!\operatorname{i} |
| + | & + & \operatorname{f}\!:\!\operatorname{j} |
| + | & + & \operatorname{g}\!:\!\operatorname{h} |
| + | & + & \operatorname{h}\!:\!\operatorname{g} |
| + | & + & \operatorname{i}\!:\!\operatorname{e} |
| + | & + & \operatorname{j}\!:\!\operatorname{f} |
| + | \\[4pt] |
| + | \operatorname{j} |
| + | & = & \operatorname{e}\!:\!\operatorname{j} |
| + | & + & \operatorname{f}\!:\!\operatorname{h} |
| + | & + & \operatorname{g}\!:\!\operatorname{i} |
| + | & + & \operatorname{h}\!:\!\operatorname{f} |
| + | & + & \operatorname{i}\!:\!\operatorname{g} |
| + | & + & \operatorname{j}\!:\!\operatorname{e} |
| + | \end{array}</math> |
| + | |} |
| | | |
− | i = e:i + f:j + g:h + h:g + i:e + j:f
| + | In (2) we consider the effects of each <math>x\!</math> in its practical bearing on contexts of the form <math>(y, \underline{~~}),</math> as <math>y\!</math> ranges over <math>G,\!</math> and the effects are such that <math>x\!</math> takes <math>(y, \underline{~~})</math> into <math>yx,\!</math> for <math>y\!</math> in <math>G,\!</math> all of which is notated as <math>x = \{ (y : yx) ~|~ y \in G \}.</math> The pairs <math>(y : yx)\!</math> can be found by picking an <math>x\!</math> on the right margin of the group operation table and considering its effects on each <math>y\!</math> in turn as these run along the left margin. This produces the ''regular post-representation'' of <math>S_3,\!</math> like so: |
| | | |
− | j = e:j + f:h + g:i + h:f + i:g + j:e
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| + | <math>\begin{array}{*{13}{c}} |
| + | \operatorname{e} |
| + | & = & \operatorname{e}\!:\!\operatorname{e} |
| + | & + & \operatorname{f}\!:\!\operatorname{f} |
| + | & + & \operatorname{g}\!:\!\operatorname{g} |
| + | & + & \operatorname{h}\!:\!\operatorname{h} |
| + | & + & \operatorname{i}\!:\!\operatorname{i} |
| + | & + & \operatorname{j}\!:\!\operatorname{j} |
| + | \\[4pt] |
| + | \operatorname{f} |
| + | & = & \operatorname{e}\!:\!\operatorname{f} |
| + | & + & \operatorname{f}\!:\!\operatorname{g} |
| + | & + & \operatorname{g}\!:\!\operatorname{e} |
| + | & + & \operatorname{h}\!:\!\operatorname{i} |
| + | & + & \operatorname{i}\!:\!\operatorname{j} |
| + | & + & \operatorname{j}\!:\!\operatorname{h} |
| + | \\[4pt] |
| + | \operatorname{g} |
| + | & = & \operatorname{e}\!:\!\operatorname{g} |
| + | & + & \operatorname{f}\!:\!\operatorname{e} |
| + | & + & \operatorname{g}\!:\!\operatorname{f} |
| + | & + & \operatorname{h}\!:\!\operatorname{j} |
| + | & + & \operatorname{i}\!:\!\operatorname{h} |
| + | & + & \operatorname{j}\!:\!\operatorname{i} |
| + | \\[4pt] |
| + | \operatorname{h} |
| + | & = & \operatorname{e}\!:\!\operatorname{h} |
| + | & + & \operatorname{f}\!:\!\operatorname{j} |
| + | & + & \operatorname{g}\!:\!\operatorname{i} |
| + | & + & \operatorname{h}\!:\!\operatorname{e} |
| + | & + & \operatorname{i}\!:\!\operatorname{g} |
| + | & + & \operatorname{j}\!:\!\operatorname{f} |
| + | \\[4pt] |
| + | \operatorname{i} |
| + | & = & \operatorname{e}\!:\!\operatorname{i} |
| + | & + & \operatorname{f}\!:\!\operatorname{h} |
| + | & + & \operatorname{g}\!:\!\operatorname{j} |
| + | & + & \operatorname{h}\!:\!\operatorname{f} |
| + | & + & \operatorname{i}\!:\!\operatorname{e} |
| + | & + & \operatorname{j}\!:\!\operatorname{g} |
| + | \\[4pt] |
| + | \operatorname{j} |
| + | & = & \operatorname{e}\!:\!\operatorname{j} |
| + | & + & \operatorname{f}\!:\!\operatorname{i} |
| + | & + & \operatorname{g}\!:\!\operatorname{h} |
| + | & + & \operatorname{h}\!:\!\operatorname{g} |
| + | & + & \operatorname{i}\!:\!\operatorname{f} |
| + | & + & \operatorname{j}\!:\!\operatorname{e} |
| + | \end{array}</math> |
| + | |} |
| | | |
− | In (2), we consider the effects of each x in its
| + | If the ante-rep looks different from the post-rep, it is just as it should be, as <math>S_3\!</math> is non-abelian (non-commutative), and so the two representations differ in the details of their practical effects, though, of course, being representations of the same abstract group, they must be isomorphic. |
− | practical bearing on contexts of the form <y, _>,
| |
− | as y ranges over G, and the effects are such that
| |
− | x takes <y, _> into yx, for y in G, all of which
| |
− | is summarily notated as x = {<y : yx> : y in G}.
| |
− | The pairs <y : yx> can be found by picking an x
| |
− | on the right margin of the group operation table
| |
− | and considering its effects on each y in turn as
| |
− | these run along the left margin. This generates
| |
− | the regular post-representation of S_3, like so:
| |
− | | |
− | e = e:e + f:f + g:g + h:h + i:i + j:j
| |
− | | |
− | f = e:f + f:g + g:e + h:i + i:j + j:h
| |
− | | |
− | g = e:g + f:e + g:f + h:j + i:h + j:i
| |
− | | |
− | h = e:h + f:j + g:i + h:e + i:g + j:f
| |
− | | |
− | i = e:i + f:h + g:j + h:f + i:e + j:g
| |
− | | |
− | j = e:j + f:i + g:h + h:g + i:f + j:e
| |
− | | |
− | If the ante-rep looks different from the post-rep, | |
− | it is just as it should be, as S_3 is non-abelian | |
− | (non-commutative), and so the two representations | |
− | differ in the details of their practical effects, | |
− | though, of course, being representations of the | |
− | same abstract group, they must be isomorphic. | |
− | </pre>
| |
| | | |
| ==Note 20== | | ==Note 20== |