Changes

MyWikiBiz, Author Your Legacy — Tuesday November 05, 2024
Jump to navigationJump to search
Line 3,042: Line 3,042:  
|}
 
|}
   −
<pre>
+
For at least a little while, I will keep explicit the distinction between a ''relative term'' like <math>\mathit{m}\!</math> and a ''relation'' like <math>M \subseteq X \times X,</math> but it is best to think of both of these entities as involving different applications of the same information, and so we could just as easily write this form:
It has long been customary to omit the implicit plus signs
  −
in these matrical displays, but I have restored them here
  −
simply as a way of separating terms in this blancophage
  −
web format.
     −
For at least a little while, I will make explicit
+
{| align="center" cellpadding="6" width="90%"
the distinction between a "relative term" like m
+
| align="center" |
and a "relation" like M c X x X, but it is best
+
<math>
to think of both of these entities as involving
+
m \quad = \quad
different applications of the same information,
+
\begin{bmatrix}
and so we could just as easily write this form:
+
m_{aa}(a\!:\!a) & m_{ab}(a\!:\!b) & m_{ac}(a\!:\!c)
 +
\\
 +
m_{ba}(b\!:\!a) & m_{bb}(b\!:\!b) & m_{bc}(b\!:\!c)
 +
\\
 +
m_{ca}(c\!:\!a) & m_{cb}(c\!:\!b) & m_{cc}(c\!:\!c)
 +
\end{bmatrix}
 +
</math>
 +
|}
   −
  m  =
+
By way of making up a concrete example, let us say that <math>M\!</math> is given as follows:
   −
  m_aa a:a +  m_ab a:b +  m_ac a:c +
+
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{array}{l}
 +
a ~\text{is a marker for}~ a
 +
\\
 +
a ~\text{is a marker for}~ b
 +
\\
 +
b ~\text{is a marker for}~ b
 +
\\
 +
b ~\text{is a marker for}~ c
 +
\\
 +
c ~\text{is a marker for}~ c
 +
\\
 +
c ~\text{is a marker for}~ a
 +
\end{array}</math>
 +
|}
   −
  m_ba b:a  +  m_bb b:b  +  m_bc b:c  +
+
In sum, the relative term <math>\mathit{m}\!</math> and the relation <math>M\!</math> are both represented by the following matrix:
   −
  m_ca c:a +  m_cb c:b +  m_cc c:c
+
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<math>\begin{bmatrix}
 +
1 \cdot (a\!:\!a) & 1 \cdot (a\!:\!b) & 0 \cdot (a\!:\!c)
 +
\\
 +
0 \cdot (b\!:\!a) & 1 \cdot (b\!:\!b) & 1 \cdot (b\!:\!c)
 +
\\
 +
1 \cdot (c\!:\!a) & 0 \cdot (c\!:\!b) & 1 \cdot (c\!:\!c)
 +
\end{bmatrix}</math>
 +
|}
   −
By way of making up a concrete example,
+
I think this much will serve to fix notation and set up the remainder of the account.
let us say that M is given as follows:
  −
 
  −
  a is a marker for a
  −
 
  −
  a is a marker for b
  −
 
  −
  b is a marker for b
  −
 
  −
  b is a marker for c
  −
 
  −
  c is a marker for c
  −
 
  −
  c is a marker for a
  −
 
  −
In sum, we have this matrix:
  −
 
  −
  M  =
  −
 
  −
  1 a:a  +  1 a:b  +  0 a:c  +
  −
 
  −
  0 b:a  +  1 b:b  +  1 b:c  +
  −
 
  −
  1 c:a  +  0 c:b  +  1 c:c
  −
 
  −
I think that will serve to fix notation
  −
and set up the remainder of the account.
  −
</pre>
      
==Note 15==
 
==Note 15==
12,080

edits

Navigation menu