Changes

MyWikiBiz, Author Your Legacy — Wednesday January 15, 2025
Jump to navigationJump to search
Line 2,785: Line 2,785:  
|}
 
|}
   −
<pre>
+
Evaluating <math>\operatorname{E}f</math> at particular values of <math>\operatorname{d}p</math> and <math>\operatorname{d}q,</math> for example, <math>\operatorname{d}p = i</math> and <math>\operatorname{d}q = j,</math> where <math>i\!</math> and <math>j\!</math> are values in <math>\mathbb{B},</math> produces the following result:
Therefore, if we evaluate Ef at particular values of dp and dq,
  −
for example, dp = i and dq = j, where i, j are in B, we obtain:
     −
  E_ij : (X -> B) ->  (X -> B)
+
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{array}{lclcl}
 +
\operatorname{E}_{ij}
 +
& : &
 +
(X \to \mathbb{B})
 +
& \to &
 +
(X \to \mathbb{B})
 +
\\[6pt]
 +
\operatorname{E}_{ij}
 +
& : &
 +
f
 +
& \mapsto &
 +
\operatorname{E}_{ij}f
 +
\\[6pt]
 +
\operatorname{E}_{ij}f
 +
& = &
 +
\operatorname{E}f|_{\operatorname{d}p = i, \operatorname{d}q = j}
 +
& = &
 +
f(p + i, q + j)
 +
\\[6pt]
 +
&  &
 +
& = &
 +
f( \texttt{(} p, i \texttt{)}, \texttt{(} q, j \texttt{)} )
 +
\end{array}</math>
 +
|}
   −
  E_ij :   f     ->   E_ij f
+
The notation is a little awkward, but the data of Table&nbsp;A3 should make the sense clear.  The important thing to observe is that <math>\operatorname{E}_{ij}</math> has the effect of transforming each proposition <math>f : X \to \mathbb{B}</math> into a proposition <math>f^\prime : X \to \mathbb{B}.</math>  As it happens, the action of each <math>\operatorname{E}_{ij}</math> is one-to-one and onto, so the gang of four operators <math>\{ \operatorname{E}_{ij} : i, j \in \mathbb{B} \}</math> is an example of what is called a ''transformation group'' on the set of sixteen propositions.  Bowing to a longstanding local and linear tradition, I will therefore redub the four elements of this group as <math>\operatorname{T}_{00}, \operatorname{T}_{01}, \operatorname{T}_{10}, \operatorname{T}_{11},</math> to bear in mind their transformative character, or nature, as the case may be.  Abstractly viewed, this group of order four has the following operation table:
   −
  E_ij f
+
<br>
   −
  = Ef | <dp = i, dq = j>
+
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|- style="height:50px"
 +
| width="12%" style="border-bottom:1px solid black; border-right:1px solid black" | <math>\cdot</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{T}_{00}</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{T}_{01}</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{T}_{10}</math>
 +
| width="22%" style="border-bottom:1px solid black" |
 +
<math>\operatorname{T}_{11}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{T}_{00}</math>
 +
| <math>\operatorname{T}_{00}</math>
 +
| <math>\operatorname{T}_{01}</math>
 +
| <math>\operatorname{T}_{10}</math>
 +
| <math>\operatorname{T}_{11}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{T}_{01}</math>
 +
| <math>\operatorname{T}_{01}</math>
 +
| <math>\operatorname{T}_{00}</math>
 +
| <math>\operatorname{T}_{11}</math>
 +
| <math>\operatorname{T}_{10}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{T}_{10}</math>
 +
| <math>\operatorname{T}_{10}</math>
 +
| <math>\operatorname{T}_{11}</math>
 +
| <math>\operatorname{T}_{00}</math>
 +
| <math>\operatorname{T}_{01}</math>
 +
|- style="height:50px"
 +
| style="border-right:1px solid black" | <math>\operatorname{T}_{11}</math>
 +
| <math>\operatorname{T}_{11}</math>
 +
| <math>\operatorname{T}_{10}</math>
 +
| <math>\operatorname{T}_{01}</math>
 +
| <math>\operatorname{T}_{00}</math>
 +
|}
   −
  =  f<p + i, q + j>
+
<br>
   −
  = f<(p, i), (q, j)>
+
It happens that there are just two possible groups of 4 elements. One is the cyclic group <math>Z_4\!</math> (from German ''Zyklus''), which this is not.  The other is the Klein four-group <math>V_4\!</math> (from German ''Vier''), which this is.
   −
The notation is a little bit awkward, but the data of the Table should
+
More concretely viewed, the group as a whole pushes the set of sixteen propositions around in such a way that they fall into seven natural classes, called ''orbits''.  One says that the orbits are preserved by the action of the group.  There is an ''Orbit Lemma'' of immense utility to "those who count" which, depending on your upbringing, you may associate with the names of Burnside, Cauchy, Frobenius, or some subset or superset of these three, vouching that the number of orbits is equal to the mean number of fixed points, in other words, the total number of points (in our case, propositions) that are left unmoved by the separate operations, divided by the order of the group.  In this instance, <math>\operatorname{T}_{00}</math> operates as the group identity, fixing all 16 propositions, while the other three group elements fix 4 propositions each, and so we get: <math>\text{Number of orbits}~ = (4 + 4 + 4 + 16) \div 4 = 7.</math> Amazing!
make the sense clear.  The important thing to observe is that E_ij has
  −
the effect of transforming each proposition f : X -> B into some other
  −
proposition f' : X -> B.  As it happens, the action is one-to-one and
  −
onto for each E_ij, so the gang of four operators {E_ij : i, j in B}
  −
is an example of what is called a "transformation group" on the set
  −
of sixteen propositions.  Bowing to a longstanding linear and local
  −
tradition, I will therefore redub the four elements of this group
  −
as T_00, T_01, T_10, T_11, to bear in mind their transformative
  −
character, or nature, as the case may be.  Abstractly viewed,
  −
this group of order four has the following operation table:
  −
 
  −
o----------o----------o----------o----------o----------o
  −
|          %          |          |          |          |
  −
|    *    %  T_00  |  T_01  |  T_10  |  T_11  |
  −
|          %          |          |          |          |
  −
o==========o==========o==========o==========o==========o
  −
|          %          |          |          |          |
  −
|  T_00  %  T_00  |  T_01  |  T_10  |  T_11  |
  −
|          %          |          |          |          |
  −
o----------o----------o----------o----------o----------o
  −
|          %          |          |          |          |
  −
|  T_01  %  T_01  |  T_00  |  T_11  |  T_10  |
  −
|          %          |          |          |          |
  −
o----------o----------o----------o----------o----------o
  −
|          %          |          |          |          |
  −
|  T_10  %  T_10  |  T_11  |  T_00  |  T_01  |
  −
|          %          |          |          |          |
  −
o----------o----------o----------o----------o----------o
  −
|          %          |          |          |          |
  −
|  T_11  %  T_11  |  T_10  |  T_01  |  T_00  |
  −
|          %          |          |          |          |
  −
o----------o----------o----------o----------o----------o
  −
 
  −
It happens that there are just two possible groups of 4 elements.
  −
One is the cyclic group Z_4 (German "Zyklus"), which this is not.
  −
The other is Klein's four-group V_4 (German "Vier"), which it is.
  −
 
  −
More concretely viewed, the group as a whole pushes the set
  −
of sixteen propositions around in such a way that they fall
  −
into seven natural classes, called "orbits".  One says that
  −
the orbits are preserved by the action of the group.  There
  −
is an "Orbit Lemma" of immense utility to "those who count"
  −
which, depending on your upbringing, you may associate with
  −
the names of Burnside, Cauchy, Frobenius, or some subset or
  −
superset of these three, vouching that the number of orbits
  −
is equal to the mean number of fixed points, in other words,
  −
the total number of points (in our case, propositions) that
  −
are left unmoved by the separate operations, divided by the
  −
order of the group.  In this instance, T_00 operates as the
  −
group identity, fixing all 16 propositions, while the other
  −
three group elements fix 4 propositions each, and so we get:
  −
Number of orbits = (4 + 4 + 4 + 16) / 4 = 7. -- Amazing!
  −
</pre>
      
==Note 11==
 
==Note 11==
12,080

edits

Navigation menu