Changes

MyWikiBiz, Author Your Legacy — Thursday January 16, 2025
Jump to navigationJump to search
→‎Note 6: markup
Line 659: Line 659:     
==Note 6==
 
==Note 6==
 +
 +
The ''enlargement'' or ''shift'' operator <math>\operatorname{E}</math> exhibits a wealth of interesting and useful properties in its own right, so it pays to examine a few of the more salient features that play out on the surface of our initial example, <math>f(p, q) = pq.\!</math>
    
<pre>
 
<pre>
The enlargement operator E, also known as the "shift operator",
  −
has many interesting and very useful properties in its own right,
  −
so let us not fail to observe a few of the more salient features
  −
that play out on the surface of our simple example, f<p, q> = pq.
  −
   
To begin we need to formulate a suitably generic
 
To begin we need to formulate a suitably generic
 
definition of the extended universe of discourse:
 
definition of the extended universe of discourse:
Line 713: Line 710:  
the value of the enlarged proposition Ef at each of the
 
the value of the enlarged proposition Ef at each of the
 
points in the initial domain of discourse X = !P! x !Q!.
 
points in the initial domain of discourse X = !P! x !Q!.
 +
</pre>
    +
{| align="center" cellpadding="6" width="90%"
 +
| align="center" |
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 726: Line 727:  
| Ef =            (p, dp) (q, dq)                |
 
| Ef =            (p, dp) (q, dq)                |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
+
</pre>
 +
|-
 +
| align="center" |
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 739: Line 743:  
| Ef|pq =            (dp) (dq)                    |
 
| Ef|pq =            (dp) (dq)                    |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
+
</pre>
 +
|-
 +
| align="center" |
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 753: Line 760:  
| Ef|p(q) =          (dp)  dq                    |
 
| Ef|p(q) =          (dp)  dq                    |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
+
</pre>
 +
|-
 +
| align="center" |
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 767: Line 777:  
| Ef|(p)q =          dp  (dq)                    |
 
| Ef|(p)q =          dp  (dq)                    |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
+
</pre>
 +
|-
 +
| align="center" |
 +
<pre>
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 781: Line 794:  
| Ef|(p)(q) =        dp  dq                    |
 
| Ef|(p)(q) =        dp  dq                    |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 +
</pre>
 +
|}
    +
<pre>
 
Given the kind of data that arises from this form of analysis,
 
Given the kind of data that arises from this form of analysis,
 
we can now fold the disjoined ingredients back into a boolean
 
we can now fold the disjoined ingredients back into a boolean
Line 791: Line 807:  
a digraph picture, where the "no change" element (dp)(dq)
 
a digraph picture, where the "no change" element (dp)(dq)
 
is drawn as a loop at the point p q.
 
is drawn as a loop at the point p q.
 +
</pre>
 +
 +
{| align="center" cellpadding="10"
 +
| [[Image:Directed Graph PQ Enlargement Conj.jpg|500px]]
 +
|}
   −
o-------------------------------------------------o
+
{| align="center" cellpadding="10"
| f =                 p q                       |
+
|
o-------------------------------------------------o
+
<math>\begin{array}{rcccccc}
|                                                |
+
f
| Ef =             p  q   (dp)(dq)               |
+
& = & p & \cdot & q
|                                                |
+
\\[4pt]
|          +       p (q) (dp) dq                |
+
\operatorname{E}f
|                                                |
+
& = p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q)
|          +     (p) q   dp (dq)               |
+
\\[4pt]
|                                                |
+
& + p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~
|          +     (p)(q)   dp  dq                |
+
\\[4pt]
|                                                |
+
& + & (p) & \cdot &  q & \cdot & ~\operatorname{d}p~(\operatorname{d}q)
o-------------------------------------------------o
+
\\[4pt]
|                                                |
+
& + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~\end{array}</math>
|                    (dp) (dq)                    |
+
|}
|                    .--->---.                    |
  −
|                    \     /                    |
  −
|                      \p q/                      |
  −
|                      \ /                       |
  −
|  p (q) o-------------->o<--------------o (p) q  |
  −
|            (dp) dq    ^    dp (dq)            |
  −
|                        |                        |
  −
|                        |                        |
  −
|                    dp | dq                    |
  −
|                        |                        |
  −
|                       |                        |
  −
|                        |                        |
  −
|                        o                        |
  −
|                    (p) (q)                    |
  −
|                                                |
  −
o-------------------------------------------------o
     −
We may understand the enlarged proposition Ef
+
We may understand the enlarged proposition <math>\operatorname{E}f</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math>
as telling us all the different ways to reach
  −
a model of f from any point of the universe X.
  −
</pre>
      
==Note 7==
 
==Note 7==
12,080

edits

Navigation menu