Line 659: |
Line 659: |
| | | |
| ==Note 6== | | ==Note 6== |
| + | |
| + | The ''enlargement'' or ''shift'' operator <math>\operatorname{E}</math> exhibits a wealth of interesting and useful properties in its own right, so it pays to examine a few of the more salient features that play out on the surface of our initial example, <math>f(p, q) = pq.\!</math> |
| | | |
| <pre> | | <pre> |
− | The enlargement operator E, also known as the "shift operator",
| |
− | has many interesting and very useful properties in its own right,
| |
− | so let us not fail to observe a few of the more salient features
| |
− | that play out on the surface of our simple example, f<p, q> = pq.
| |
− |
| |
| To begin we need to formulate a suitably generic | | To begin we need to formulate a suitably generic |
| definition of the extended universe of discourse: | | definition of the extended universe of discourse: |
Line 713: |
Line 710: |
| the value of the enlarged proposition Ef at each of the | | the value of the enlarged proposition Ef at each of the |
| points in the initial domain of discourse X = !P! x !Q!. | | points in the initial domain of discourse X = !P! x !Q!. |
| + | </pre> |
| | | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 726: |
Line 727: |
| | Ef = (p, dp) (q, dq) | | | | Ef = (p, dp) (q, dq) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 739: |
Line 743: |
| | Ef|pq = (dp) (dq) | | | | Ef|pq = (dp) (dq) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 753: |
Line 760: |
| | Ef|p(q) = (dp) dq | | | | Ef|p(q) = (dp) dq | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 767: |
Line 777: |
| | Ef|(p)q = dp (dq) | | | | Ef|(p)q = dp (dq) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 781: |
Line 794: |
| | Ef|(p)(q) = dp dq | | | | Ef|(p)(q) = dp dq | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| + | </pre> |
| + | |} |
| | | |
| + | <pre> |
| Given the kind of data that arises from this form of analysis, | | Given the kind of data that arises from this form of analysis, |
| we can now fold the disjoined ingredients back into a boolean | | we can now fold the disjoined ingredients back into a boolean |
Line 791: |
Line 807: |
| a digraph picture, where the "no change" element (dp)(dq) | | a digraph picture, where the "no change" element (dp)(dq) |
| is drawn as a loop at the point p q. | | is drawn as a loop at the point p q. |
| + | </pre> |
| + | |
| + | {| align="center" cellpadding="10" |
| + | | [[Image:Directed Graph PQ Enlargement Conj.jpg|500px]] |
| + | |} |
| | | |
− | o-------------------------------------------------o
| + | {| align="center" cellpadding="10" |
− | | f = p q | | + | | |
− | o-------------------------------------------------o
| + | <math>\begin{array}{rcccccc} |
− | | |
| + | f |
− | | Ef = p q (dp)(dq) |
| + | & = & p & \cdot & q |
− | | |
| + | \\[4pt] |
− | | + p (q) (dp) dq |
| + | \operatorname{E}f |
− | | |
| + | & = & p & \cdot & q & \cdot & (\operatorname{d}p)(\operatorname{d}q) |
− | | + (p) q dp (dq) |
| + | \\[4pt] |
− | | |
| + | & + & p & \cdot & (q) & \cdot & (\operatorname{d}p)~\operatorname{d}q~ |
− | | + (p)(q) dp dq |
| + | \\[4pt] |
− | | |
| + | & + & (p) & \cdot & q & \cdot & ~\operatorname{d}p~(\operatorname{d}q) |
− | o-------------------------------------------------o
| + | \\[4pt] |
− | | |
| + | & + & (p) & \cdot & (q) & \cdot & ~\operatorname{d}p~~\operatorname{d}q~\end{array}</math> |
− | | (dp) (dq) |
| + | |} |
− | | .--->---. |
| |
− | | \ / |
| |
− | | \p q/ |
| |
− | | \ / |
| |
− | | p (q) o-------------->o<--------------o (p) q |
| |
− | | (dp) dq ^ dp (dq) |
| |
− | | | |
| |
− | | | |
| |
− | | dp | dq |
| |
− | | | |
| |
− | | | | | |
− | | | |
| |
− | | o |
| |
− | | (p) (q) |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
| | | |
− | We may understand the enlarged proposition Ef | + | We may understand the enlarged proposition <math>\operatorname{E}f</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math> |
− | as telling us all the different ways to reach | |
− | a model of f from any point of the universe X. | |
− | </pre> | |
| | | |
| ==Note 7== | | ==Note 7== |