Line 449: |
Line 449: |
| Sticking with the example f<p, q> = pq, let us compute the | | Sticking with the example f<p, q> = pq, let us compute the |
| value of the difference proposition Df at all of the points. | | value of the difference proposition Df at all of the points. |
| + | </pre> |
| | | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 469: |
Line 473: |
| | Df = ((p, dp)(q, dq), pq) | | | | Df = ((p, dp)(q, dq), pq) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 489: |
Line 496: |
| | Df|pq = ((dp) (dq)) | | | | Df|pq = ((dp) (dq)) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 510: |
Line 520: |
| | Df|p(q) = (dp) dq | | | | Df|p(q) = (dp) dq | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 531: |
Line 544: |
| | Df|(p)q = dp (dq) | | | | Df|(p)q = dp (dq) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 552: |
Line 568: |
| | Df|(p)(q) = dp dq | | | | Df|(p)(q) = dp dq | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| + | </pre> |
| + | |} |
| | | |
− | The easy way to visualize the values of these graphical | + | The easy way to visualize the values of these graphical expressions is just to notice the following equivalents: |
− | expressions is just to notice the following equivalents: | |
| | | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 571: |
Line 591: |
| | (e, , ... , , ) = (e) | | | | (e, , ... , , ) = (e) | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
− | | + | </pre> |
| + | |- |
| + | | align="center" | |
| + | <pre> |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| | | | | | | |
Line 588: |
Line 611: |
| | (e_1, ..., e_k, ()) = e_1 ... e_k | | | | (e_1, ..., e_k, ()) = e_1 ... e_k | |
| o-------------------------------------------------o | | o-------------------------------------------------o |
| + | </pre> |
| + | |} |
| | | |
− | Laying out the arrows on the augmented venn diagram, | + | Laying out the arrows on the augmented venn diagram, one gets a picture of a ''differential vector field''. |
− | one gets a picture of a "differential vector field". | |
| | | |
− | o-------------------------------------------------o
| + | {| align="center" cellpadding="10" |
− | | |
| + | | [[Image:Venn Diagram PQ Difference Conj.jpg|500px]] |
− | | o |
| + | |} |
− | | | |
| |
− | | dp|dq |
| |
− | | | |
| |
− | | o-----------o | o-----------o |
| |
− | | / \|/ \ |
| |
− | | / p | q \ |
| |
− | | / /|\ \ |
| |
− | | / /%|%\ \ |
| |
− | | o o%%|%%o o |
| |
− | | | (dp) dq |%%v%%| dp (dq) | |
| |
− | | | o-----------|->o<-|-----------o | |
| |
− | | | |%%%%%| | |
| |
− | | | o<----------|--o--|---------->o | |
| |
− | | | (dp) dq |%%|%%| dp (dq) | |
| |
− | | o o%%|%%o o |
| |
− | | \ \%|%/ / | | |
− | | \ \|/ / | | |
− | | \ | / |
| |
− | | \ /|\ / |
| |
− | | o-----------o | o-----------o |
| |
− | | | |
| |
− | | dp|dq |
| |
− | | | |
| |
− | | v |
| |
− | | o |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
| | | |
| + | <pre> |
| This just amounts to a depiction of the points, | | This just amounts to a depiction of the points, |
| truth-value assignments, or interpretations in | | truth-value assignments, or interpretations in |