Line 3,236:
Line 3,236:
===Symmetric Group S<sub>3</sub>===
===Symmetric Group S<sub>3</sub>===
−
−
<br>
−
−
<pre>
−
Permutations or Substitutions in Sym_{A, B, C}
−
o---------o---------o---------o---------o---------o---------o
−
| | | | | | |
−
| e | f | g | h | i | j |
−
| | | | | | |
−
o=========o=========o=========o=========o=========o=========o
−
| | | | | | |
−
| A B C | A B C | A B C | A B C | A B C | A B C |
−
| | | | | | |
−
| | | | | | | | | | | | | | | | | | | | | | | | |
−
| v v v | v v v | v v v | v v v | v v v | v v v |
−
| | | | | | |
−
| A B C | C A B | B C A | A C B | C B A | B A C |
−
| | | | | | |
−
o---------o---------o---------o---------o---------o---------o
−
</pre>
<br>
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; text-align:center; width:90%"
−
|+ <math>\text{Permutations or Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math>
+
|+ <math>\text{Permutation Substitutions in}~ \operatorname{Sym} \{ \mathrm{A}, \mathrm{B}, \mathrm{C} \}</math>
|- style="background:#f0f0ff"
|- style="background:#f0f0ff"
| width="16%" | <math>\operatorname{e}</math>
| width="16%" | <math>\operatorname{e}</math>
Line 3,271:
Line 3,251:
|
|
<math>\begin{matrix}
<math>\begin{matrix}
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
+
\\[3pt]
−
~
+
\downarrow & \downarrow & \downarrow
−
\\[4pt]
+
\\[6pt]
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
−
~
\end{matrix}</math>
\end{matrix}</math>
|
|
<math>\begin{matrix}
<math>\begin{matrix}
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
+
\\[3pt]
−
~
+
\downarrow & \downarrow & \downarrow
−
\\[4pt]
+
\\[6pt]
−
~
+
\mathrm{C} & \mathrm{A} & \mathrm{B}
−
\\[4pt]
−
~
\end{matrix}</math>
\end{matrix}</math>
|
|
<math>\begin{matrix}
<math>\begin{matrix}
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
+
\\[3pt]
−
~
+
\downarrow & \downarrow & \downarrow
−
\\[4pt]
+
\\[6pt]
−
~
+
\mathrm{B} & \mathrm{C} & \mathrm{A}
−
\\[4pt]
−
~
\end{matrix}</math>
\end{matrix}</math>
|
|
<math>\begin{matrix}
<math>\begin{matrix}
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
+
\\[3pt]
−
~
+
\downarrow & \downarrow & \downarrow
−
\\[4pt]
+
\\[6pt]
−
~
+
\mathrm{A} & \mathrm{C} & \mathrm{B}
−
\\[4pt]
−
~
\end{matrix}</math>
\end{matrix}</math>
|
|
<math>\begin{matrix}
<math>\begin{matrix}
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
+
\\[3pt]
−
~
+
\downarrow & \downarrow & \downarrow
−
\\[4pt]
+
\\[6pt]
−
~
+
\mathrm{C} & \mathrm{B} & \mathrm{A}
−
\\[4pt]
−
~
\end{matrix}</math>
\end{matrix}</math>
|
|
<math>\begin{matrix}
<math>\begin{matrix}
−
~
+
\mathrm{A} & \mathrm{B} & \mathrm{C}
−
\\[4pt]
+
\\[3pt]
−
~
+
\downarrow & \downarrow & \downarrow
−
\\[4pt]
+
\\[6pt]
−
~
+
\mathrm{B} & \mathrm{A} & \mathrm{C}
−
\\[4pt]
−
~
\end{matrix}</math>
\end{matrix}</math>
|}
|}