Line 3,373: |
Line 3,373: |
| | | |
| In the case of <math>V_4 = (G, \cdot),</math> where <math>G\!</math> is the ''underlying set'' <math>\{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h} \},</math> we have the 3-adic relation <math>L(V_4) \subseteq G \times G \times G</math> whose triples are listed below: | | In the case of <math>V_4 = (G, \cdot),</math> where <math>G\!</math> is the ''underlying set'' <math>\{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h} \},</math> we have the 3-adic relation <math>L(V_4) \subseteq G \times G \times G</math> whose triples are listed below: |
| + | |
| + | {| align="center" cellpadding="6" width="90%" |
| + | | align="center" | |
| + | <math>\begin{matrix} |
| + | (\mathrm{e}, \mathrm{e}, \mathrm{e}) & |
| + | (\mathrm{e}, \mathrm{f}, \mathrm{f}) & |
| + | (\mathrm{e}, \mathrm{g}, \mathrm{g}) & |
| + | (\mathrm{e}, \mathrm{h}, \mathrm{h}) |
| + | \\[6pt] |
| + | (\mathrm{f}, \mathrm{e}, \mathrm{f}) & |
| + | (\mathrm{f}, \mathrm{f}, \mathrm{e}) & |
| + | (\mathrm{f}, \mathrm{g}, \mathrm{h}) & |
| + | (\mathrm{f}, \mathrm{h}, \mathrm{g}) |
| + | \\[6pt] |
| + | (\mathrm{g}, \mathrm{e}, \mathrm{g}) & |
| + | (\mathrm{g}, \mathrm{f}, \mathrm{h}) & |
| + | (\mathrm{g}, \mathrm{g}, \mathrm{e}) & |
| + | (\mathrm{g}, \mathrm{h}, \mathrm{f}) |
| + | \\[6pt] |
| + | (\mathrm{h}, \mathrm{e}, \mathrm{h}) & |
| + | (\mathrm{h}, \mathrm{f}, \mathrm{g}) & |
| + | (\mathrm{h}, \mathrm{g}, \mathrm{f}) & |
| + | (\mathrm{h}, \mathrm{h}, \mathrm{e}) |
| + | \end{matrix}</math> |
| + | |} |
| | | |
| <pre> | | <pre> |
− | | <e, e, e>
| |
− | | <e, f, f>
| |
− | | <e, g, g>
| |
− | | <e, h, h>
| |
− | |
| |
− | | <f, e, f>
| |
− | | <f, f, e>
| |
− | | <f, g, h>
| |
− | | <f, h, g>
| |
− | |
| |
− | | <g, e, g>
| |
− | | <g, f, h>
| |
− | | <g, g, e>
| |
− | | <g, h, f>
| |
− | |
| |
− | | <h, e, h>
| |
− | | <h, f, g>
| |
− | | <h, g, f>
| |
− | | <h, h, e>
| |
− |
| |
| It is part of the definition of a group that the 3-adic | | It is part of the definition of a group that the 3-adic |
| relation L c G^3 is actually a function L : G x G -> G. | | relation L c G^3 is actually a function L : G x G -> G. |