Line 3,373:
Line 3,373:
In the case of <math>V_4 = (G, \cdot),</math> where <math>G\!</math> is the ''underlying set'' <math>\{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h} \},</math> we have the 3-adic relation <math>L(V_4) \subseteq G \times G \times G</math> whose triples are listed below:
In the case of <math>V_4 = (G, \cdot),</math> where <math>G\!</math> is the ''underlying set'' <math>\{ \operatorname{e}, \operatorname{f}, \operatorname{g}, \operatorname{h} \},</math> we have the 3-adic relation <math>L(V_4) \subseteq G \times G \times G</math> whose triples are listed below:
+
+
{| align="center" cellpadding="6" width="90%"
+
| align="center" |
+
<math>\begin{matrix}
+
(\mathrm{e}, \mathrm{e}, \mathrm{e}) &
+
(\mathrm{e}, \mathrm{f}, \mathrm{f}) &
+
(\mathrm{e}, \mathrm{g}, \mathrm{g}) &
+
(\mathrm{e}, \mathrm{h}, \mathrm{h})
+
\\[6pt]
+
(\mathrm{f}, \mathrm{e}, \mathrm{f}) &
+
(\mathrm{f}, \mathrm{f}, \mathrm{e}) &
+
(\mathrm{f}, \mathrm{g}, \mathrm{h}) &
+
(\mathrm{f}, \mathrm{h}, \mathrm{g})
+
\\[6pt]
+
(\mathrm{g}, \mathrm{e}, \mathrm{g}) &
+
(\mathrm{g}, \mathrm{f}, \mathrm{h}) &
+
(\mathrm{g}, \mathrm{g}, \mathrm{e}) &
+
(\mathrm{g}, \mathrm{h}, \mathrm{f})
+
\\[6pt]
+
(\mathrm{h}, \mathrm{e}, \mathrm{h}) &
+
(\mathrm{h}, \mathrm{f}, \mathrm{g}) &
+
(\mathrm{h}, \mathrm{g}, \mathrm{f}) &
+
(\mathrm{h}, \mathrm{h}, \mathrm{e})
+
\end{matrix}</math>
+
|}
<pre>
<pre>
−
| <e, e, e>
−
| <e, f, f>
−
| <e, g, g>
−
| <e, h, h>
−
|
−
| <f, e, f>
−
| <f, f, e>
−
| <f, g, h>
−
| <f, h, g>
−
|
−
| <g, e, g>
−
| <g, f, h>
−
| <g, g, e>
−
| <g, h, f>
−
|
−
| <h, e, h>
−
| <h, f, g>
−
| <h, g, f>
−
| <h, h, e>
−
It is part of the definition of a group that the 3-adic
It is part of the definition of a group that the 3-adic
relation L c G^3 is actually a function L : G x G -> G.
relation L c G^3 is actually a function L : G x G -> G.