Changes

MyWikiBiz, Author Your Legacy — Wednesday November 20, 2024
Jump to navigationJump to search
→‎Note 7: markup
Line 5,793: Line 5,793:  
|}
 
|}
    +
The notation is a little bit awkward, but the data of Table&nbsp;A3 should make the sense clear.  The important thing to observe is that <math>\operatorname{E}_{ij}</math> has the effect of transforming each proposition <math>f : U \to \mathbb{B}</math> into a proposition <math>f^\prime : U \to \mathbb{B}.</math>  As it happens, the action of each <math>\operatorname{E}_{ij}</math> is one-to-one and onto, so the gang of four operators <math>\{ \operatorname{E}_{ij} : i, j \in \mathbb{B} \}</math> is an example of what is called a ''transformation group'' on the set of sixteen propositions.  Bowing to a longstanding local and linear tradition, I will therefore redub the four elements of this group as <math>\operatorname{T}_{00}, \operatorname{T}_{01}, \operatorname{T}_{10}, \operatorname{T}_{11},</math> to bear in mind their transformative character, or nature, as the case may be.  Abstractly viewed, this group of order four has the following operation table:
 +
 +
{| align="center" cellpadding="6" width="90%"
 +
|
 
<pre>
 
<pre>
The notation is a little bit awkward, but the data of the Table should
  −
make the sense clear.  The important thing to observe is that E_ij has
  −
the effect of transforming each proposition f : U -> B into some other
  −
proposition f' : U -> B.  As it happens, the action is one-to-one and
  −
onto for each E_ij, so the gang of four operators {E_ij : i, j in B}
  −
is an example of what is called a "transformation group" on the set
  −
of sixteen propositions.  Bowing to a longstanding local and linear
  −
tradition, I will therefore redub the four elements of this group
  −
as T_00, T_01, T_10, T_11, to bear in mind their transformative
  −
character, or nature, as the case may be.  Abstractly viewed,
  −
this group of order four has the following operation table:
  −
   
o----------o----------o----------o----------o----------o
 
o----------o----------o----------o----------o----------o
 
|          %          |          |          |          |
 
|          %          |          |          |          |
Line 5,827: Line 5,819:  
|          %          |          |          |          |
 
|          %          |          |          |          |
 
o----------o----------o----------o----------o----------o
 
o----------o----------o----------o----------o----------o
 +
</pre>
 +
|}
    +
<pre>
 
It happens that there are just two possible groups of 4 elements.
 
It happens that there are just two possible groups of 4 elements.
 
One is the cyclic group Z_4 (German "Zyklus"), which this is not.
 
One is the cyclic group Z_4 (German "Zyklus"), which this is not.
12,080

edits

Navigation menu