Line 5,747: |
Line 5,747: |
| <br> | | <br> |
| | | |
− | <pre>
| + | The shift operator <math>\operatorname{E}</math> can be understood as enacting a ''substitution operation'' on the proposition that is given as its argument. |
− | The shift operator E can be understood as enacting a substitution operation | |
− | on the proposition that is given as its argument. In our immediate example, | |
− | we have the following data and definition:
| |
| | | |
− | E : (U -> B) -> (EU -> B), | + | For example, the action of <math>\operatorname{E}</math> on the conjunction <math>f(x, y) = xy\!</math> is defined as follows: |
| | | |
− | E : f(x, y) -> Ef(x, y, dx, dy), | + | {| align="center" cellpadding="6" width="90%" |
| + | | |
| + | <math>\begin{array}{lcl} |
| + | \operatorname{E} : (U \to \mathbb{B}) |
| + | & \to & |
| + | (\operatorname{E}U \to \mathbb{B}), |
| + | \\[6pt] |
| + | \operatorname{E} : f(x, y) |
| + | & \mapsto & |
| + | \operatorname{E}f(x, y, \operatorname{d}x, \operatorname{d}y), |
| + | \\[6pt] |
| + | \operatorname{E}f(x, y, \operatorname{d}x, \operatorname{d}y) |
| + | & = & |
| + | f(x + \operatorname{d}x, y + \operatorname{d}y). |
| + | \end{array}</math> |
| + | |} |
| | | |
− | Ef(x, y, dx, dy) = f(x + dx, y + dy).
| + | Therefore, if we evaluate <math>\operatorname{E}f</math> at particular values of <math>\operatorname{d}x</math> and <math>\operatorname{d}y,</math> for example, <math>\operatorname{d}x = i</math> and <math>\operatorname{d}y = j,</math> where <math>i, j \in \mathbb{B},</math> we obtain: |
| | | |
− | Therefore, if we evaluate Ef at particular values of dx and dy,
| + | {| align="center" cellpadding="6" width="90%" |
− | for example, dx = i and dy = j, where i, j are in B, we obtain:
| + | | <math>\operatorname{E}_{ij} : (U \to \mathbb{B}) \to (U \to \mathbb{B}),</math> |
− | | + | |- |
− | E_ij : (U -> B) -> (U -> B),
| + | | <math>\operatorname{E}_{ij} : f \mapsto \operatorname{E}_{ij}f,</math> |
− | | + | |- |
− | E_ij : f -> E_ij f,
| + | | <math>\operatorname{E}_{ij}f = \operatorname{E}f|_{\operatorname{d}x = i, \operatorname{d}y = j} = f(x + i, y + j).</math> |
− | | + | |} |
− | E_ij f = Ef | <dx = i, dy = j> = f(x + i, y + j).
| |
| | | |
| + | <pre> |
| The notation is a little bit awkward, but the data of the Table should | | The notation is a little bit awkward, but the data of the Table should |
| make the sense clear. The important thing to observe is that E_ij has | | make the sense clear. The important thing to observe is that E_ij has |