Changes

MyWikiBiz, Author Your Legacy — Wednesday November 20, 2024
Jump to navigationJump to search
→‎Note 7: markup + rewrite
Line 5,747: Line 5,747:  
<br>
 
<br>
   −
<pre>
+
The shift operator <math>\operatorname{E}</math> can be understood as enacting a ''substitution operation'' on the proposition that is given as its argument.
The shift operator E can be understood as enacting a substitution operation
  −
on the proposition that is given as its argument. In our immediate example,
  −
we have the following data and definition:
     −
E : (U -> B)  -> (EU -> B),
+
For example, the action of <math>\operatorname{E}</math> on the conjunction <math>f(x, y) = xy\!</math> is defined as follows:
   −
E : f(x, y) ->  Ef(x, y, dx, dy),
+
{| align="center" cellpadding="6" width="90%"
 +
|
 +
<math>\begin{array}{lcl}
 +
\operatorname{E} : (U \to \mathbb{B})
 +
& \to &
 +
(\operatorname{E}U \to \mathbb{B}),
 +
\\[6pt]
 +
\operatorname{E} : f(x, y)
 +
& \mapsto &
 +
\operatorname{E}f(x, y, \operatorname{d}x, \operatorname{d}y),
 +
\\[6pt]
 +
\operatorname{E}f(x, y, \operatorname{d}x, \operatorname{d}y)
 +
&  =  &
 +
f(x + \operatorname{d}x, y + \operatorname{d}y).
 +
\end{array}</math>
 +
|}
   −
Ef(x, y, dx, dy)  =  f(x + dx, y + dy).
+
Therefore, if we evaluate <math>\operatorname{E}f</math> at particular values of <math>\operatorname{d}x</math> and <math>\operatorname{d}y,</math> for example, <math>\operatorname{d}x = i</math> and <math>\operatorname{d}y = j,</math> where <math>i, j \in \mathbb{B},</math> we obtain:
   −
Therefore, if we evaluate Ef at particular values of dx and dy,
+
{| align="center" cellpadding="6" width="90%"
for example, dx = i and dy = j, where i, j are in B, we obtain:
+
| <math>\operatorname{E}_{ij} : (U \to \mathbb{B}) \to (U \to \mathbb{B}),</math>
 
+
|-
E_ij : (U -> B) ->  (U -> B),
+
| <math>\operatorname{E}_{ij} : f \mapsto \operatorname{E}_{ij}f,</math>
 
+
|-
E_ij :   f     ->  E_ij f,
+
| <math>\operatorname{E}_{ij}f = \operatorname{E}f|_{\operatorname{d}x = i, \operatorname{d}y = j} = f(x + i, y + j).</math>
 
+
|}
E_ij f = Ef | <dx = i, dy = j= f(x + i, y + j).
      +
<pre>
 
The notation is a little bit awkward, but the data of the Table should
 
The notation is a little bit awkward, but the data of the Table should
 
make the sense clear.  The important thing to observe is that E_ij has
 
make the sense clear.  The important thing to observe is that E_ij has
12,080

edits

Navigation menu