Line 1:
Line 1:
−
A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form ''f'' : '''B'''<sup>''k''</sup> → '''B''', where ''k'' is a non-negative integer and '''B''' is the [[boolean domain]] {0, 1}.
+
A '''truth table''' is a tabular array that illustrates the computation of a [[boolean function]], that is, a function of the form <math>f : \mathbb{B}^k \to \mathbb{B},</math> where <math>k\!</math> is a non-negative integer and <math>\mathbb{B}</math> is the [[boolean domain]] <math>\{ 0, 1 \}.\!</math>
==Logical negation==
==Logical negation==
Line 7:
Line 7:
The truth table of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows:
The truth table of '''NOT p''' (also written as '''~p''' or '''¬p''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:40%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:40%"
|+ '''Logical Negation'''
|+ '''Logical Negation'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:20%" | p
! style="width:20%" | p
! style="width:20%" | ¬p
! style="width:20%" | ¬p
Line 17:
Line 19:
| T || F
| T || F
|}
|}
+
<br>
<br>
The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following:
The logical negation of a proposition '''p''' is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; width:40%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; width:40%"
|+ '''Variant Notations'''
|+ '''Variant Notations'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="text-align:center" | Notation
! style="text-align:center" | Notation
! Vocalization
! Vocalization
Line 36:
Line 41:
| bang ''p''
| bang ''p''
|}
|}
+
<br>
<br>
Line 44:
Line 50:
The truth table of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows:
The truth table of '''p AND q''' (also written as '''p ∧ q''', '''p & q''', or '''p<math>\cdot</math>q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Conjunction'''
|+ '''Logical Conjunction'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 59:
Line 67:
| T || T || T
| T || T || T
|}
|}
+
<br>
<br>
Line 67:
Line 76:
The truth table of '''p OR q''' (also written as '''p ∨ q''') is as follows:
The truth table of '''p OR q''' (also written as '''p ∨ q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Disjunction'''
|+ '''Logical Disjunction'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 82:
Line 93:
| T || T || T
| T || T || T
|}
|}
+
<br>
<br>
Line 90:
Line 102:
The truth table of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows:
The truth table of '''p EQ q''' (also written as '''p = q''', '''p ↔ q''', or '''p ≡ q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Equality'''
|+ '''Logical Equality'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 105:
Line 119:
| T || T || T
| T || T || T
|}
|}
+
<br>
<br>
Line 113:
Line 128:
The truth table of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows:
The truth table of '''p XOR q''' (also written as '''p + q''', '''p ⊕ q''', or '''p ≠ q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Exclusive Disjunction'''
|+ '''Exclusive Disjunction'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 128:
Line 145:
| T || T || F
| T || T || F
|}
|}
+
<br>
<br>
Line 146:
Line 164:
The truth table associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows:
The truth table associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Implication'''
|+ '''Logical Implication'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 161:
Line 181:
| T || T || T
| T || T || T
|}
|}
+
<br>
<br>
Line 169:
Line 190:
The truth table of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows:
The truth table of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NAND'''
|+ '''Logical NAND'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 184:
Line 207:
| T || T || F
| T || T || F
|}
|}
+
<br>
<br>
Line 192:
Line 216:
The truth table of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows:
The truth table of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows:
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%"
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NNOR'''
|+ '''Logical NNOR'''
−
|- style="background:paleturquoise"
+
|- style="background:#e6e6ff"
! style="width:15%" | p
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | q
Line 207:
Line 233:
| T || T || F
| T || T || F
|}
|}
+
<br>
<br>
Line 249:
Line 276:
[[Category:Computer Science]]
[[Category:Computer Science]]
[[Category:Discrete Mathematics]]
[[Category:Discrete Mathematics]]
+
[[Category:Formal Languages]]
+
[[Category:Formal Sciences]]
+
[[Category:Formal Systems]]
+
[[Category:Linguistics]]
[[Category:Logic]]
[[Category:Logic]]
[[Category:Mathematics]]
[[Category:Mathematics]]
+
[[Category:Philosophy]]
+
[[Category:Semiotics]]
+
+
<sharethis />