MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
38 bytes removed
, 02:01, 21 May 2009
Line 189: |
Line 189: |
| : This means that the set of objects <math>\{ x_j : 1 \le j \le k \}</math> is a set of boolean functions <math>\{ x_j : \mathbb{B}^k \to \mathbb{B} \}</math> subject to logical interpretation as a set of ''basic propositions'' that collectively generate the complete set of <math>2^{2^k}</math> propositions over <math>\mathbb{B}^k.</math> | | : This means that the set of objects <math>\{ x_j : 1 \le j \le k \}</math> is a set of boolean functions <math>\{ x_j : \mathbb{B}^k \to \mathbb{B} \}</math> subject to logical interpretation as a set of ''basic propositions'' that collectively generate the complete set of <math>2^{2^k}</math> propositions over <math>\mathbb{B}^k.</math> |
| | | |
− | * A '''literal''' is one of the 2''k'' propositions ''x''<sub>1</sub>, …, ''x''<sub>''k''</sub>, (''x''<sub>1</sub>), …, (''x''<sub>''k''</sub>), in other words, either a ''posited'' basic proposition ''x''<sub>''j''</sub> or a ''negated'' basic proposition (''x''<sub>''j''</sub>), for some ''j'' = 1 to ''k''.
| + | ; Literal |
| + | : A ''literal'' is one of the <math>2k\!</math> propositions <math>x_1, \ldots, x_k, (x_1), \ldots, (x_k),</math> in other words, either a ''posited'' basic proposition <math>x_j\!</math> or a ''negated'' basic proposition <math>(x_j),\!</math> for some <math>j = 1 ~\text{to}~ k.</math> |
| | | |
| * In mathematics generally, the '''[[fiber (mathematics)|fiber]]''' of a point ''y'' under a function ''f'' : ''X'' → ''Y'' is defined as the inverse image <math>f^{-1}(y)</math>. | | * In mathematics generally, the '''[[fiber (mathematics)|fiber]]''' of a point ''y'' under a function ''f'' : ''X'' → ''Y'' is defined as the inverse image <math>f^{-1}(y)</math>. |