Line 3:
Line 3:
In contexts where the initial letter <math>\nu\!</math> is understood, the minimal negation operators can be indicated by argument lists in parentheses. The first four members of this family of operators are shown below, with paraphrases in a couple of other notations, where tildes and primes, respectively, indicate logical negation.
In contexts where the initial letter <math>\nu\!</math> is understood, the minimal negation operators can be indicated by argument lists in parentheses. The first four members of this family of operators are shown below, with paraphrases in a couple of other notations, where tildes and primes, respectively, indicate logical negation.
−
: <math>\begin{matrix}
+
{| align="center" cellpadding="10" style="text-align:center"
−
(~) & = & 0 & = & \mbox{false} \\
+
|
−
(x) & = & \tilde{x} & = & x' \\
+
<math>\begin{matrix}
−
(x, y) & = & \tilde{x}y \lor x\tilde{y} & = & x'y \lor xy' \\
+
(~) & = & 0 & = & \operatorname{false}
+
\\[6pt]
+
(x) & = & \tilde{x} & = & x'
+
\\[6pt]
+
(x, y) & = & \tilde{x}y \lor x\tilde{y} & = & x'y \lor xy'
+
\\[6pt]
(x, y, z) & = & \tilde{x}yz \lor x\tilde{y}z \lor xy\tilde{z} & = & x'yz \lor xy'z \lor xyz'
(x, y, z) & = & \tilde{x}yz \lor x\tilde{y}z \lor xy\tilde{z} & = & x'yz \lor xy'z \lor xyz'
\end{matrix}</math>
\end{matrix}</math>
+
|}
It may also be noted that <math>(x, y)\!</math> is the same function as <math>x + y\!</math> and <math>x \ne y</math>, and that the inclusive disjunctions indicated for <math>(x, y)\!</math> and for <math>(x, y, z)\!</math> may be replaced with exclusive disjunctions without affecting the meaning, because the terms disjoined are already disjoint. However, the function <math>(x, y, z)\!</math> is not the same thing as the function <math>x + y + z\!</math>.
It may also be noted that <math>(x, y)\!</math> is the same function as <math>x + y\!</math> and <math>x \ne y</math>, and that the inclusive disjunctions indicated for <math>(x, y)\!</math> and for <math>(x, y, z)\!</math> may be replaced with exclusive disjunctions without affecting the meaning, because the terms disjoined are already disjoint. However, the function <math>(x, y, z)\!</math> is not the same thing as the function <math>x + y + z\!</math>.
Line 154:
Line 160:
* A singular proposition ''s'' : '''B'''<sup>''k''</sup> → '''B''' can be expressed as a singular conjunction:
* A singular proposition ''s'' : '''B'''<sup>''k''</sup> → '''B''' can be expressed as a singular conjunction:
−
<br>
+
−
:{|
+
{| align="center" cellspacing"10" width="90%"
+
| height="36" | <math>s ~=~ e_1 e_2 \ldots e_{k-1} e_k</math>,
+
|-
|
|
−
| <math>s\ \ =\ e_1 e_2 \ldots e_{k-1} e_k</math>,
+
<math>\begin{array}{llll}
−
|-
+
\text{where} & e_j & = & x_j
−
| where
+
\\[6pt]
−
| <math>e_j\ =\ x_j\!</math>
+
\text{or} & e_j & = & \nu (x_j),
−
|-
+
\\[6pt]
−
| or
+
\text{for} & j & = & 1 ~\text{to}~ k.
−
| <math>e_j\ =\ \nu (x_j)\!</math>,
+
\end{array}</math>
−
|-
−
| for
−
| <math>j\ \ =\ 1\ \mbox{to}\ k</math>.
|}
|}
==See also==
==See also==
−
{|
+
{{col-begin}}
−
| valign=top |
+
{{col-break}}
* [[Ampheck]]
* [[Ampheck]]
* [[Anamnesis]]
* [[Anamnesis]]
Line 181:
Line 186:
* [[Boolean logic]]
* [[Boolean logic]]
* [[Boolean-valued function]]
* [[Boolean-valued function]]
−
| valign=top |
+
{{col-break}}
* [[Continuous predicate]]
* [[Continuous predicate]]
* [[Differentiable manifold]]
* [[Differentiable manifold]]
Line 190:
Line 195:
* [[Logical connective]]
* [[Logical connective]]
* [[Logical graph]]
* [[Logical graph]]
−
| valign=top |
+
{{col-break}}
* [[Meno]]
* [[Meno]]
* [[Multigrade operator]]
* [[Multigrade operator]]
Line 199:
Line 204:
* [[Universal algebra]]
* [[Universal algebra]]
* [[Zeroth order logic]]
* [[Zeroth order logic]]
−
|}
+
{{col-end}}
==External links==
==External links==