Line 5,553: |
Line 5,553: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_u ~=~ \prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> | + | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_x ~=~ \prod_{p \in X} \mathfrak{L}_{xp}^{\mathfrak{W}_p}</math> |
| |} | | |} |
| | | |
Line 5,598: |
Line 5,598: |
| |} | | |} |
| | | |
− | With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_u = \textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> as follows: | + | With the above picture in mind, we can visualize the computation of <math>(\mathfrak{L}^\mathfrak{W})_x = \textstyle\prod_{p \in X} \mathfrak{L}_{xp}^{\mathfrak{W}_p}</math> as follows: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | valign="top" | 1. | | | valign="top" | 1. |
− | | Pick a specific <math>u\!</math> in the bottom row of the Figure. | + | | Pick a specific <math>x\!</math> in the bottom row of the Figure. |
| |- | | |- |
| | valign="top" | 2. | | | valign="top" | 2. |
− | | Pan across the elements <math>x\!</math> in the middle row of the Figure. | + | | Pan across the elements <math>p\!</math> in the middle row of the Figure. |
| |- | | |- |
| | valign="top" | 3. | | | valign="top" | 3. |
− | | If <math>u\!</math> links to <math>x\!</math> then <math>\mathfrak{L}_{ux} = 1,</math> otherwise <math>\mathfrak{L}_{ux} = 0.</math> | + | | If <math>x\!</math> links to <math>p\!</math> then <math>\mathfrak{L}_{xp} = 1,</math> otherwise <math>\mathfrak{L}_{xp} = 0.</math> |
| |- | | |- |
| | valign="top" | 4. | | | valign="top" | 4. |
− | | If <math>x\!</math> in the middle row links to <math>x\!</math> in the top row then <math>\mathfrak{W}_x = 1,</math> otherwise <math>\mathfrak{W}_x = 0.</math> | + | | If <math>p\!</math> in the middle row links to <math>p\!</math> in the top row then <math>\mathfrak{W}_p = 1,</math> otherwise <math>\mathfrak{W}_p = 0.</math> |
| |- | | |- |
| | valign="top" | 5. | | | valign="top" | 5. |
− | | Compute the value <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x} = (\mathfrak{L}_{ux} >\!\!\!-~ \mathfrak{W}_x)</math> for each <math>x\!</math> in the middle row. | + | | Compute the value <math>\mathfrak{L}_{xp}^{\mathfrak{W}_p} = (\mathfrak{L}_{xp} >\!\!\!-~ \mathfrak{W}_p)</math> for each <math>p\!</math> in the middle row. |
| |- | | |- |
| | valign="top" | 6. | | | valign="top" | 6. |
− | | If any of the values <math>\mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0\!</math> then the product <math>\textstyle\prod_{x \in X} \mathfrak{L}_{ux}^{\mathfrak{W}_x}</math> is <math>0,\!</math> otherwise it is <math>1.\!</math> | + | | If any of the values <math>\mathfrak{L}_{xp}^{\mathfrak{W}_p}</math> is <math>0\!</math> then the product <math>\textstyle\prod_{p \in X} \mathfrak{L}_{xp}^{\mathfrak{W}_p}</math> is <math>0,\!</math> otherwise it is <math>1.\!</math> |
| |} | | |} |
| | | |
− | As a general observation, we know that the value of <math>(\mathfrak{L}^\mathfrak{W})_u</math> goes to <math>0\!</math> just as soon as we find an <math>x \in X</math> such that <math>\mathfrak{L}_{ux} = 0</math> and <math>\mathfrak{W}_x = 1,</math> in other words, such that <math>(u, x) \notin L</math> but <math>u \in W.</math> If there is no such <math>x,\!</math> then <math>(\mathfrak{L}^\mathfrak{W})_u = 1.</math> | + | As a general observation, we know that the value of <math>(\mathfrak{L}^\mathfrak{W})_x</math> goes to <math>0\!</math> just as soon as we find an <math>p \in X</math> such that <math>\mathfrak{L}_{xp} = 0</math> and <math>\mathfrak{W}_p = 1,</math> in other words, such that <math>(x, p) \notin L</math> but <math>p \in W.</math> If there is no such <math>p,\!</math> then <math>(\mathfrak{L}^\mathfrak{W})_x = 1.</math> |
| | | |
− | Running through the program for each <math>u \in X,</math> the only case that produces a non-zero result is <math>(\mathfrak{L}^\mathfrak{W})_e = 1.</math> That portion of the work can be sketched as follows: | + | Running through the program for each <math>x \in X,</math> the only case that produces a non-zero result is <math>(\mathfrak{L}^\mathfrak{W})_e = 1.</math> That portion of the work can be sketched as follows: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_e ~=~ \prod_{x \in X} \mathfrak{L}_{ex}^{\mathfrak{W}_x} ~=~ 0^0 \cdot 0^0 \cdot 0^0 \cdot 1^1 \cdot 1^0 \cdot 1^1 \cdot 0^0 \cdot 0^0 \cdot 0^0 ~=~ 1</math> | + | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_e ~=~ \prod_{p \in X} \mathfrak{L}_{ep}^{\mathfrak{W}_p} ~=~ 0^0 \cdot 0^0 \cdot 0^0 \cdot 1^1 \cdot 1^0 \cdot 1^1 \cdot 0^0 \cdot 0^0 \cdot 0^0 ~=~ 1</math> |
| |} | | |} |
| | | |