MyWikiBiz, Author Your Legacy — Sunday February 16, 2025
Jump to navigationJump to search
804 bytes added
, 03:38, 7 May 2009
Line 5,712: |
Line 5,712: |
| |} | | |} |
| | | |
− | If <math>\mathfrak{A}</math> and <math>\mathfrak{B}</math> are two 1-dimensional matrices over the same index set <math>X,\!</math> then <math>\mathfrak{A} = \mathfrak{B}</math> if and only if <math>\mathfrak{A}_x = \mathfrak{B}_x</math> for every <math>x \in X.</math> Therefore, a routine way of checking whether the 1-dimensional matrices <math>(\mathfrak{S}^\mathfrak{L})^\mathfrak{W}</math> and <math>\mathfrak{S}^{\mathfrak{L}\mathfrak{W}}</math> are equal is to check whether the following equation holds for an arbitrary index <math>x \in X.</math> | + | If <math>\mathfrak{A}</math> and <math>\mathfrak{B}</math> are two 1-dimensional matrices over the same index set <math>X,\!</math> then <math>\mathfrak{A} = \mathfrak{B}</math> if and only if <math>\mathfrak{A}_x = \mathfrak{B}_x</math> for every <math>x \in X.</math> Therefore, a routine way to check whether the 1-dimensional matrices <math>(\mathfrak{S}^\mathfrak{L})^\mathfrak{W}</math> and <math>\mathfrak{S}^{\mathfrak{L}\mathfrak{W}}</math> are equal is to check whether the following equation holds for an arbitrary index <math>x \in X.</math> |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | height="60" | <math>((\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_x ~=~ (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_x</math> | | | height="60" | <math>((\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_x ~=~ (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_x</math> |
| + | |} |
| + | |
| + | Taking both ends toward the middle, we proceed as follows: |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | height="80" | |
| + | <math> |
| + | (\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_x ~=~ |
| + | \prod_{p \in X} (\mathfrak{S}^\mathfrak{L})_{xp}^{\mathfrak{W}_p} ~=~ |
| + | \prod_{p \in X} (\prod_{q \in X} \mathfrak{S}_{xq}^{\mathfrak{L}_{qp}})^{\mathfrak{W}_p} ~=~ |
| + | \prod_{p \in X} \prod_{q \in X} \mathfrak{S}_{xq}^{\mathfrak{L}_{qp}\mathfrak{W}_p} |
| + | </math> |
| + | |} |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | height="80" | |
| + | <math> |
| + | (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_x ~=~ |
| + | \prod_{q \in X} \mathfrak{S}_{xq}^{(\mathfrak{L}\mathfrak{W})_q} ~=~ |
| + | \prod_{q \in X} \mathfrak{S}_{xq}^{\sum_{p \in X} \mathfrak{L}_{qp} \mathfrak{W}_p} ~=~ |
| + | \prod_{q \in X} \prod_{p \in X} \mathfrak{S}_{xq}^{\mathfrak{L}_{qp} \mathfrak{W}_p} |
| + | </math> |
| |} | | |} |
| | | |