MyWikiBiz, Author Your Legacy — Sunday February 16, 2025
Jump to navigationJump to search
2 bytes removed
, 21:46, 6 May 2009
Line 5,712: |
Line 5,712: |
| |} | | |} |
| | | |
− | If <math>\mathfrak{A}</math> and <math>\mathfrak{B}</math> are two square matrices over the same index set <math>X,\!</math> then <math>\mathfrak{A} = \mathfrak{B}</math> if and only if <math>\mathfrak{A}_{uv} = \mathfrak{B}_{uv}</math> for every <math>u, v \in X.</math> Therefore, a routine way to check whether <math>(\mathfrak{S}^\mathfrak{L})^\mathfrak{W} = \mathfrak{S}^{\mathfrak{L}\mathfrak{W}}</math> is to check whether the following equation holds for an arbitrary index <math>u \in X.</math> | + | If <math>\mathfrak{A}</math> and <math>\mathfrak{B}</math> are two 1-dimensional matrices over the same index set <math>X,\!</math> then <math>\mathfrak{A} = \mathfrak{B}</math> if and only if <math>\mathfrak{A}_x = \mathfrak{B}_x</math> for every <math>x \in X.</math> Therefore, a routine way to check whether <math>(\mathfrak{S}^\mathfrak{L})^\mathfrak{W} = \mathfrak{S}^{\mathfrak{L}\mathfrak{W}}</math> is to check whether the following equation holds for an arbitrary index <math>x \in X.</math> |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
− | | height="60" | <math>((\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_u ~=~ (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_u</math> | + | | height="60" | <math>((\mathfrak{S}^\mathfrak{L})^\mathfrak{W})_x ~=~ (\mathfrak{S}^{\mathfrak{L}\mathfrak{W}})_x</math> |
| |} | | |} |
| | | |