Changes

MyWikiBiz, Author Your Legacy — Monday November 04, 2024
Jump to navigationJump to search
Line 5,540: Line 5,540:  
====Example 6====
 
====Example 6====
   −
The discussion up to this point has developed two ways of computing a logical involution that raises a 2-adic relative term to the power of a 1-adic absolute term, for example, <math>\mathit{l}^\mathrm{w}\!</math> for "lover of every woman".
+
We now have two ways of computing a logical involution that raises a 2-adic relative term to the power of a 1-adic absolute term, for example, <math>\mathit{l}^\mathrm{w}\!</math> for "lover of every woman".
    
The first method operates in the medium of set theory, expressing the denotation of the term <math>\mathit{l}^\mathrm{w}\!</math> as the intersection of a set of relational applications:
 
The first method operates in the medium of set theory, expressing the denotation of the term <math>\mathit{l}^\mathrm{w}\!</math> as the intersection of a set of relational applications:
Line 5,586: Line 5,586:  
To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
 
To highlight the role of <math>W\!</math> more clearly, the Figure represents the absolute term <math>^{\backprime\backprime} \mathrm{w} ^{\prime\prime}</math> by means of the relative term <math>^{\backprime\backprime} \mathrm{w}, ^{\prime\prime}</math> that conveys the same information.
   −
Computing the denotation of <math>\mathit{l}^\mathrm{w}\!</math> by means of the set-theoretic formula, we can show our work as follows:
+
Computing the denotation of <math>\mathit{l}^\mathrm{w}\!</math> by way of the set-theoretic formula, we can show our work as follows:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
Line 5,615: Line 5,615:     
As a general observation, we know that the value of <math>(\mathfrak{L}^\mathfrak{W})_u</math> goes to <math>0\!</math> just as soon as we find an <math>x \in X</math> such that <math>\mathfrak{L}_{ux} = 0</math> and <math>\mathfrak{W}_x = 1,</math> in other words, such that <math>(u, x) \notin L</math> but <math>u \in W.</math>  If there is no such <math>x,\!</math> then <math>(\mathfrak{L}^\mathfrak{W})_u = 1.</math>
 
As a general observation, we know that the value of <math>(\mathfrak{L}^\mathfrak{W})_u</math> goes to <math>0\!</math> just as soon as we find an <math>x \in X</math> such that <math>\mathfrak{L}_{ux} = 0</math> and <math>\mathfrak{W}_x = 1,</math> in other words, such that <math>(u, x) \notin L</math> but <math>u \in W.</math>  If there is no such <math>x,\!</math> then <math>(\mathfrak{L}^\mathfrak{W})_u = 1.</math>
 +
 +
Running through the program for each <math>u \in X,</math> the only case that produces a non-zero result is <math>(\mathfrak{L}^\mathfrak{W})_e = 1.</math>  That portion of the work can be sketched as follows:
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| <math>(\mathfrak{L}^\mathfrak{W})_e ~=~ \prod_{x \in X} \mathfrak{L}_{ex}^{\mathfrak{W}_x} ~=~ 0^0 \cdot 0^0 \cdot 0^0 \cdot 1^0 \cdot 0^0 \cdot 1^0 \cdot 0^0 \cdot 0^0 \cdot 0^0 ~=~ 1</math>
 +
|}
    
===Commentary Note 12.2===
 
===Commentary Note 12.2===
12,080

edits

Navigation menu