MyWikiBiz, Author Your Legacy — Wednesday April 09, 2025
Jump to navigationJump to search
641 bytes added
, 18:44, 2 May 2009
Line 5,532:
Line 5,532:
|}
|}
−
Because <math>\mathit{l}^\mathrm{w}\!</math> denotes the elements of a subset of <math>X\!</math> the matrix <math>\mathfrak{L}^\mathfrak{W}</math> is a 1-dimensional array of coefficients in <math>\mathbb{B}</math> that is indexed by the elements of <math>X.\!</math> The value of the matrix <math>\mathfrak{L}^\mathfrak{W}</math> at the index <math>a \in X</math> is written <math>(\mathfrak{L}^\mathfrak{W})_a</math> and computed as follows:
+
The fact that <math>\mathit{l}^\mathrm{w}\!</math> denotes the elements of a subset of <math>X\!</math> means that the matrix <math>\mathfrak{L}^\mathfrak{W}</math> is a 1-dimensional array of coefficients in <math>\mathbb{B}</math> that is indexed by the elements of <math>X.\!</math> The value of the matrix <math>\mathfrak{L}^\mathfrak{W}</math> at the index <math>a \in X</math> is written <math>(\mathfrak{L}^\mathfrak{W})_a</math> and computed as follows:
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_a ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_a ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
+
|}
+
+
The meaning of a formula like that is more easily grasped with the aid of a freely chosen example and a picture of the relations involved.
+
+
{| align="center" cellspacing="6" width="90%"
+
|
+
<pre>
+
1 2 3 4 5 6 7 8 9
+
o o o o o o o o o X
+
| |
+
| | W,
+
| |
+
o o o o o o o o o X
+
\ \ / / \ / \ \ / /
+
\ \ / \ / \ \ / L
+
\ / \ / \ / \ / \ /
+
o o o o o o o o o X
+
1 2 3 4 5 6 7 8 9
+
</pre>
|}
|}