MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
641 bytes added
, 18:44, 2 May 2009
Line 5,532: |
Line 5,532: |
| |} | | |} |
| | | |
− | Because <math>\mathit{l}^\mathrm{w}\!</math> denotes the elements of a subset of <math>X\!</math> the matrix <math>\mathfrak{L}^\mathfrak{W}</math> is a 1-dimensional array of coefficients in <math>\mathbb{B}</math> that is indexed by the elements of <math>X.\!</math> The value of the matrix <math>\mathfrak{L}^\mathfrak{W}</math> at the index <math>a \in X</math> is written <math>(\mathfrak{L}^\mathfrak{W})_a</math> and computed as follows:
| + | The fact that <math>\mathit{l}^\mathrm{w}\!</math> denotes the elements of a subset of <math>X\!</math> means that the matrix <math>\mathfrak{L}^\mathfrak{W}</math> is a 1-dimensional array of coefficients in <math>\mathbb{B}</math> that is indexed by the elements of <math>X.\!</math> The value of the matrix <math>\mathfrak{L}^\mathfrak{W}</math> at the index <math>a \in X</math> is written <math>(\mathfrak{L}^\mathfrak{W})_a</math> and computed as follows: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_a ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math> | | | height="60" | <math>(\mathfrak{L}^\mathfrak{W})_a ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math> |
| + | |} |
| + | |
| + | The meaning of a formula like that is more easily grasped with the aid of a freely chosen example and a picture of the relations involved. |
| + | |
| + | {| align="center" cellspacing="6" width="90%" |
| + | | |
| + | <pre> |
| + | 1 2 3 4 5 6 7 8 9 |
| + | o o o o o o o o o X |
| + | | | |
| + | | | W, |
| + | | | |
| + | o o o o o o o o o X |
| + | \ \ / / \ / \ \ / / |
| + | \ \ / \ / \ \ / L |
| + | \ / \ / \ / \ / \ / |
| + | o o o o o o o o o X |
| + | 1 2 3 4 5 6 7 8 9 |
| + | </pre> |
| |} | | |} |
| | | |