Changes

MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
Line 5,532: Line 5,532:  
|}
 
|}
   −
Because <math>\mathit{l}^\mathrm{w}\!</math> denotes the elements of a subset of <math>X\!</math> the matrix <math>\mathfrak{L}^\mathfrak{W}</math> is a 1-dimensional array of coefficients in <math>\mathbb{B}</math> that is indexed by the elements of <math>X.\!</math>  The value of the matrix <math>\mathfrak{L}^\mathfrak{W}</math> at the index <math>a \in X</math> is written <math>(\mathfrak{L}^\mathfrak{W})_a</math> and computed as follows:
+
The fact that <math>\mathit{l}^\mathrm{w}\!</math> denotes the elements of a subset of <math>X\!</math> means that the matrix <math>\mathfrak{L}^\mathfrak{W}</math> is a 1-dimensional array of coefficients in <math>\mathbb{B}</math> that is indexed by the elements of <math>X.\!</math>  The value of the matrix <math>\mathfrak{L}^\mathfrak{W}</math> at the index <math>a \in X</math> is written <math>(\mathfrak{L}^\mathfrak{W})_a</math> and computed as follows:
    
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
 
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_a ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
 
| height="60" | <math>(\mathfrak{L}^\mathfrak{W})_a ~=~ \prod_{x \in X} \mathfrak{L}_{ax}^{\mathfrak{W}_{x}}</math>
 +
|}
 +
 +
The meaning of a formula like that is more easily grasped with the aid of a freely chosen example and a picture of the relations involved.
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
|
 +
<pre>
 +
1  2  3  4  5  6  7  8  9   
 +
o  o  o  o  o  o  o  o  o  X
 +
            |      |               
 +
            |      |              W,
 +
            |      |               
 +
o  o  o  o  o  o  o  o  o  X
 +
\  \ /  / \    / \  \ /  /   
 +
  \  \  /  \  /  \  \  /    L
 +
  \ / \ /    \ /    \ / \ /     
 +
o  o  o  o  o  o  o  o  o  X
 +
1  2  3  4  5  6  7  8  9   
 +
</pre>
 
|}
 
|}
  
12,080

edits

Navigation menu