Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
Line 46: Line 46:     
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
| height="40" | <math>X\!</math> is the set whose elements form the ''universe of discourse''.
+
| height="40" | <math>X\!</math> is a set distinguished as the ''universe of discourse''.
 
|-
 
|-
 
| height="40" | <math>W \subseteq X</math> is the 1-adic relation, or set, whose elements fall under the absolute term <math>\mathrm{w} = \text{woman}.\!</math>  The elements of <math>W\!</math> are sometimes referred to as the ''denotation'' or the set-theoretic ''extension'' of the term <math>\mathrm{w}.\!</math>
 
| height="40" | <math>W \subseteq X</math> is the 1-adic relation, or set, whose elements fall under the absolute term <math>\mathrm{w} = \text{woman}.\!</math>  The elements of <math>W\!</math> are sometimes referred to as the ''denotation'' or the set-theoretic ''extension'' of the term <math>\mathrm{w}.\!</math>
Line 56: Line 56:     
{| align="center" cellspacing="6" width="90%"
 
{| align="center" cellspacing="6" width="90%"
| height="40" | <math>\mathfrak{W} = \operatorname{Mat}(W) = \operatorname{Mat}(\mathrm{w}) = (\mathfrak{W}_{xy})</math> is the 1-dimensional matrix representation of the set <math>W\!</math> and the term <math>\mathrm{w}.\!</math>
+
| height="40" | <math>\mathfrak{W} = \operatorname{Mat}(W) = \operatorname{Mat}(\mathrm{w}) = (\mathfrak{W}_x)</math> is the 1-dimensional matrix representation of the set <math>W\!</math> and the term <math>\mathrm{w}.\!</math>
 
|-
 
|-
 
| height="40" | <math>\mathfrak{L} = \operatorname{Mat}(L) = \operatorname{Mat}(\mathit{l}) = (\mathfrak{L}_{xy})</math> is the 2-dimensional matrix representation of the relation <math>L\!</math> and the relative term <math>\mathit{l}.\!</math>
 
| height="40" | <math>\mathfrak{L} = \operatorname{Mat}(L) = \operatorname{Mat}(\mathit{l}) = (\mathfrak{L}_{xy})</math> is the 2-dimensional matrix representation of the relation <math>L\!</math> and the relative term <math>\mathit{l}.\!</math>
12,080

edits

Navigation menu