Line 5,445:
Line 5,445:
Proceeding as before, assume the following definitions:
Proceeding as before, assume the following definitions:
−
{| align="center" cellspacing="10" width="90%"
+
{| align="center" cellspacing="6" width="90%"
−
| <math>X\!</math> is the universe of discourse,
+
| height="40" | <math>X\!</math> is the universe of discourse,
|-
|-
−
| <math>W \subseteq X</math> is the denotation of the absolute term <math>\mathrm{w} = \text{woman},\!</math>
+
| height="40" | <math>W \subseteq X</math> is the denotation of the absolute term <math>\mathrm{w} = \text{woman},\!</math>
|-
|-
−
| <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~},</math>
+
| height="40" | <math>L \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{l} = \text{lover of}\,\underline{~~~~},</math>
|-
|-
−
| <math>S \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{s} = \text{servant of}\,\underline{~~~~}.</math>
+
| height="40" | <math>S \subseteq X \times X\!</math> is the 2-adic relation associated with the relative term <math>\mathit{s} = \text{servant of}\,\underline{~~~~}.</math>
|}
|}
−
{| align="center" cellspacing="10" width="90%"
+
Then we have the following results:
−
| <math>\mathit{s}^{(\mathit{l}\mathrm{w})} ~=~ \bigcap_{x \in LW} \operatorname{proj}_1 (S \star x)</math>
+
+
{| align="center" cellspacing="6" width="90%"
+
| height="40" | <math>\mathit{s}^{(\mathit{l}\mathrm{w})} ~=~ \bigcap_{x \in LW} \operatorname{proj}_1 (S \star x)</math>
|}
|}