Line 4,560:
Line 4,560:
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
−
| <math>\mathrm{f} < \mathrm{m} ~\Rightarrow~ [\mathrm{f}] < [\mathrm{m}].</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{f} < \mathrm{m} & \Rightarrow & [\mathrm{f}] < [\mathrm{m}].
+
\end{matrix}</math>
|}
|}
Line 4,578:
Line 4,581:
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
−
| <math>x <_1 y ~\Rightarrow~ F(x) <_2 F(y).</math>
+
|
+
<math>\begin{matrix}
+
x <_1 y & \Rightarrow & F(x) <_2 F(y).
+
\end{matrix}</math>
|}
|}
−
The "number of" map <math>v : (S, <_1) \to (\mathbb{R}, <_2)</math> has just this character, as exemplified by its application to the following case:
+
The "number of" map <math>v : (S, <_1) \to (\mathbb{R}, <_2)</math> has just this character, as exemplified in the case at hand:
−
: ''f'' < ''m'' ⇒ [''f''] < [''m'']
+
{| align="center" cellspacing="6" width="90%"
−
+
|
−
: ''f'' < ''m'' ⇒ ''vf'' < ''vm''
+
<math>\begin{matrix}
+
\mathrm{f} & < & \mathrm{m} & \Rightarrow & [\mathrm{f}] & < & [\mathrm{m}]
+
\\[6pt]
+
\mathrm{f} & < & \mathrm{m} & \Rightarrow & v\mathrm{f} & < & v\mathrm{m}
+
\end{matrix}</math>
+
|}
−
Here, to be more exacting, we may interpret the "<" on the left as "proper subsumption", that is, excluding the equality case, while we read the "<" on the right as the usual "less than".
+
Here, to be more exacting, the <math>^{\backprime\backprime}\!\!<\!^{\prime\prime}</math> on the left is read as ''proper subsumption'', that is, the relation of being a subset but not being equal, while the <math>^{\backprime\backprime}\!\!<\!^{\prime\prime}</math> on the right is read as the usual ''less than'' relation.
===Commentary Note 11.18===
===Commentary Note 11.18===