MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
37 bytes added
, 15:52, 15 April 2009
Line 4,232: |
Line 4,232: |
| For a 2-adic relation <math>L \subseteq X \times Y,</math> we have: | | For a 2-adic relation <math>L \subseteq X \times Y,</math> we have: |
| | | |
− | {| align="center" cellspacing="6" width="90%" | + | {| align="center" cellspacing="6" style="text-align:center" width="90%" |
| | | | | |
| <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
Line 4,241: |
Line 4,241: |
| |} | | |} |
| | | |
− | As for the definition of relational composition, it is enough to consider the coefficient of the composite on an arbitrary ordered pair like ''i'':''j''. | + | As for the definition of relational composition, it is enough to consider the coefficient of the composite on an arbitrary ordered pair like <math>i:j.\!</math> |
| | | |
− | : (''P'' o ''Q'')<sub>''ij''</sub> = ∑<sub>''k''</sub> (''P''<sub>''ik''</sub> ''Q''<sub>''kj''</sub>). | + | {| align="center" cellspacing="6" style="text-align:center" width="90%" |
| + | | <math>(P \circ Q)_{ij} ~=~ \sum_k P_{ik} Q_{kj}</math> |
| + | |} |
| | | |
| So let us begin. | | So let us begin. |