| Line 3,959: | Line 3,959: | 
|  | ===Commentary Note 11.9=== |  | ===Commentary Note 11.9=== | 
|  |  |  |  | 
| − | Among the vast variety of conceivable regularities affecting 2-adic relations, we pay special attention to the ''c''-regularity conditions where''c'' is equal to 1. | + | Among the vast variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1. | 
|  |  |  |  | 
| − | {| align="center" cellspacing="6" width="90%" <!--QUOTE--> | + | Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation.  The following properties of <math>~P~</math> can be defined: | 
|  | + |   | 
|  | + | {| align="center" cellspacing="6" width="90%" | 
|  | | |  | | | 
| − | <p>Let ''P'' ⊆ ''X'' × ''Y'' be an arbitrary 2-adic relation.  The following properties of P can be defined:</p> | + | <math>\begin{array}{lll} | 
| − |   | + | P ~\text{is total at}~ X | 
| − | {| cellpadding="4" | + | & \iff & | 
| − | | ''P'' is"total" at''X''
 | + | P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X. | 
| − | | iff
 | + | \\[6pt] | 
| − | | ''P'' is (≥1)-regular at''X''.
 | + | P ~\text{is total at}~ Y | 
| − | |-
 | + | & \iff & | 
| − | | ''P'' is"total" at''Y''
 | + | P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y. | 
| − | | iff
 | + | \\[6pt] | 
| − | | ''P'' is (≥1)-regular at''Y''.
 | + | P ~\text{is tubular at}~ X | 
| − | |-
 | + | & \iff & | 
| − | | ''P'' is"tubular" at''X''
 | + | P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X. | 
| − | | iff
 | + | \\[6pt] | 
| − | | ''P'' is (≤1)-regular at''X''.
 | + | P ~\text{is tubular at}~ Y | 
| − | |-
 | + | & \iff & | 
| − | | ''P'' is"tubular" at''Y''
 | + | P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y. | 
| − | | iff
 | + | \end{array}</math> | 
| − | | ''P'' is (≤1)-regular at''Y''.
 |  | 
| − | |}
 |  | 
|  | |} |  | |} | 
|  |  |  |  |