Line 3,959:
Line 3,959:
===Commentary Note 11.9===
===Commentary Note 11.9===
−
Among the vast variety of conceivable regularities affecting 2-adic relations, we pay special attention to the ''c''-regularity conditions where ''c'' is equal to 1.
+
Among the vast variety of conceivable regularities affecting 2-adic relations, we pay special attention to the <math>c\!</math>-regularity conditions where <math>c\!</math> is equal to 1.
−
{| align="center" cellspacing="6" width="90%" <!--QUOTE-->
+
Let <math>P \subseteq X \times Y</math> be an arbitrary 2-adic relation. The following properties of <math>~P~</math> can be defined:
+
+
{| align="center" cellspacing="6" width="90%"
|
|
−
<p>Let ''P'' ⊆ ''X'' × ''Y'' be an arbitrary 2-adic relation. The following properties of P can be defined:</p>
+
<math>\begin{array}{lll}
−
+
P ~\text{is total at}~ X
−
{| cellpadding="4"
+
& \iff &
−
| ''P'' is "total" at ''X''
+
P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ X.
−
| iff
+
\\[6pt]
−
| ''P'' is (≥1)-regular at ''X''.
+
P ~\text{is total at}~ Y
−
|-
+
& \iff &
−
| ''P'' is "total" at ''Y''
+
P ~\text{is}~ (\ge 1)\text{-regular}~ \text{at}~ Y.
−
| iff
+
\\[6pt]
−
| ''P'' is (≥1)-regular at ''Y''.
+
P ~\text{is tubular at}~ X
−
|-
+
& \iff &
−
| ''P'' is "tubular" at ''X''
+
P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ X.
−
| iff
+
\\[6pt]
−
| ''P'' is (≤1)-regular at ''X''.
+
P ~\text{is tubular at}~ Y
−
|-
+
& \iff &
−
| ''P'' is "tubular" at ''Y''
+
P ~\text{is}~ (\le 1)\text{-regular}~ \text{at}~ Y.
−
| iff
+
\end{array}</math>
−
| ''P'' is (≤1)-regular at ''Y''.
−
|}
|}
|}