Line 3,460: |
Line 3,460: |
| |} | | |} |
| | | |
− | Assuming the associativity of multiplication among 2-adic relatives, we may compute the product <math>~\mathrm{m,}\mathrm{b,}\mathrm{r}~</math> by a brute force method as follows: | + | Assuming the associativity of multiplication among 2-adic relatives, we may compute the product <math>~\mathrm{m},\mathrm{b},\mathrm{r}~</math> by a brute force method as follows: |
| | | |
| {| align="center" cellspacing="6" width="90%" | | {| align="center" cellspacing="6" width="90%" |
| | | | | |
| <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
− | \mathrm{m,}\mathrm{b,}\mathrm{r} | + | \mathrm{m},\mathrm{b},\mathrm{r} |
| & = & | | & = & |
| (\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{D} ~+\!\!,~ \mathrm{O}) | | (\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{D} ~+\!\!,~ \mathrm{O}) |
Line 3,477: |
Line 3,477: |
| |} | | |} |
| | | |
− | This avers that a man that is black that is rich is Othello, which is true on the premisses of our universe of discourse. | + | This says that a man that is black that is rich is Othello, which is true on the premisses of our present universe of discourse. |
| | | |
− | The stock associations of <math>\mathfrak{g}\mathit{o}\mathrm{h}</math> lead us to multiply out the product <math>~\mathrm{m},\!,\mathrm{b},\mathrm{r}~</math> along the following lines, where the trinomials of the form <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z)\!</math> are the only ones that produce any non-null result, specifically, of the form <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z) = X.\!</math>
| + | Following the standard associative combinations of <math>\mathfrak{g}\mathit{o}\mathrm{h},</math> the product <math>~\mathrm{m},\!,\mathrm{b},\mathrm{r}~</math> is multiplied out along the following lines, where the trinomials of the form <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z)\!</math> are the only ones that produce a non-null result, namely, <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z) = X.\!</math> |
| | | |
− | :{| cellpadding="4"
| + | {| align="center" cellspacing="6" width="90%" |
− | | m,,b,r | + | | |
− | | =
| + | <math>\begin{array}{lll} |
− | | (C:C:C +, I:I:I +, J:J:J +, O:O:O)(O:O)(D +, O)
| + | \mathrm{m},\!,\mathrm{b},\mathrm{r} |
− | |-
| + | & = & |
− | |
| + | (\mathrm{C}\!:\!\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J}\!:\!\mathrm{J} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{D} ~+\!\!,~ \mathrm{O}) |
− | | =
| + | \\[6pt] |
− | | (O:O:O)(O:O)(O)
| + | & = & |
− | |-
| + | (\mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{O}) |
− | |
| + | \\[6pt] |
− | | =
| + | & = & |
− | | O
| + | \mathrm{O} |
| + | \end{array}</math> |
| |} | | |} |
| | | |
− | So we have that m,,b,r = m,b,r. | + | So we have that <math>\mathrm{m},\!,\mathrm{b},\mathrm{r} ~=~ \mathrm{m},\mathrm{b},\mathrm{r}.</math> |
| | | |
| In closing, observe that the teridentity relation has turned up again in this context, as the second comma-ing of the universal term itself: | | In closing, observe that the teridentity relation has turned up again in this context, as the second comma-ing of the universal term itself: |