Line 3,460:
Line 3,460:
|}
|}
−
Assuming the associativity of multiplication among 2-adic relatives, we may compute the product <math>~\mathrm{m,}\mathrm{b,}\mathrm{r}~</math> by a brute force method as follows:
+
Assuming the associativity of multiplication among 2-adic relatives, we may compute the product <math>~\mathrm{m},\mathrm{b},\mathrm{r}~</math> by a brute force method as follows:
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
|
|
<math>\begin{array}{lll}
<math>\begin{array}{lll}
−
\mathrm{m,}\mathrm{b,}\mathrm{r}
+
\mathrm{m},\mathrm{b},\mathrm{r}
& = &
& = &
(\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{D} ~+\!\!,~ \mathrm{O})
(\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{D} ~+\!\!,~ \mathrm{O})
Line 3,477:
Line 3,477:
|}
|}
−
This avers that a man that is black that is rich is Othello, which is true on the premisses of our universe of discourse.
+
This says that a man that is black that is rich is Othello, which is true on the premisses of our present universe of discourse.
−
The stock associations of <math>\mathfrak{g}\mathit{o}\mathrm{h}</math> lead us to multiply out the product <math>~\mathrm{m},\!,\mathrm{b},\mathrm{r}~</math> along the following lines, where the trinomials of the form <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z)\!</math> are the only ones that produce any non-null result, specifically, of the form <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z) = X.\!</math>
+
Following the standard associative combinations of <math>\mathfrak{g}\mathit{o}\mathrm{h},</math> the product <math>~\mathrm{m},\!,\mathrm{b},\mathrm{r}~</math> is multiplied out along the following lines, where the trinomials of the form <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z)\!</math> are the only ones that produce a non-null result, namely, <math>(X\!:\!Y\!:\!Z)(Y\!:\!Z)(Z) = X.\!</math>
−
:{| cellpadding="4"
+
{| align="center" cellspacing="6" width="90%"
−
| m,,b,r
+
|
−
| =
+
<math>\begin{array}{lll}
−
| (C:C:C +, I:I:I +, J:J:J +, O:O:O)(O:O)(D +, O)
+
\mathrm{m},\!,\mathrm{b},\mathrm{r}
−
|-
+
& = &
−
|
+
(\mathrm{C}\!:\!\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J}\!:\!\mathrm{J} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{D} ~+\!\!,~ \mathrm{O})
−
| =
+
\\[6pt]
−
| (O:O:O)(O:O)(O)
+
& = &
−
|-
+
(\mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{O})(\mathrm{O}\!:\!\mathrm{O})(\mathrm{O})
−
|
+
\\[6pt]
−
| =
+
& = &
−
| O
+
\mathrm{O}
+
\end{array}</math>
|}
|}
−
So we have that m,,b,r = m,b,r.
+
So we have that <math>\mathrm{m},\!,\mathrm{b},\mathrm{r} ~=~ \mathrm{m},\mathrm{b},\mathrm{r}.</math>
In closing, observe that the teridentity relation has turned up again in this context, as the second comma-ing of the universal term itself:
In closing, observe that the teridentity relation has turned up again in this context, as the second comma-ing of the universal term itself: