Line 2,991:
Line 2,991:
And next we derive the following results:
And next we derive the following results:
−
−
:{| cellpadding="4"
−
| 'l',
−
| =
−
| colspan="2" | "lover that is --- of ---"
−
|-
−
|
−
| =
−
| colspan="2" | B:B:C +, C:C:B +, D:D:O +, E:E:I +, I:I:E +, J:J:D +, O:O:D
−
|}
{| align="center" cellspacing="6" width="90%"
{| align="center" cellspacing="6" width="90%"
|
|
−
<math>\begin{array}{lll}
+
<math>\begin{array}{l}
−
\mathit{l},\!\mathit{s}\mathrm{w}
+
\mathit{l}, ~=
−
& = &
+
\\[6pt]
+
\text{lover that is}\, \underline{~~~~}\, \text{of}\, \underline{~~~~} ~=
+
\\[6pt]
+
(\mathrm{B}\!:\!\mathrm{B}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{C}\!:\!\mathrm{C}\!:\!\mathrm{B} ~+\!\!,~ \mathrm{D}\!:\!\mathrm{D}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{E}\!:\!\mathrm{E}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I}\!:\!\mathrm{E} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{D})
+
\\[12pt]
+
\mathit{l},\!\mathit{s}\mathrm{w} ~=
+
\\[6pt]
(\mathrm{B}\!:\!\mathrm{B}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{C}\!:\!\mathrm{C}\!:\!\mathrm{B} ~+\!\!,~ \mathrm{D}\!:\!\mathrm{D}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{E}\!:\!\mathrm{E}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I}\!:\!\mathrm{E} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{D})
(\mathrm{B}\!:\!\mathrm{B}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{C}\!:\!\mathrm{C}\!:\!\mathrm{B} ~+\!\!,~ \mathrm{D}\!:\!\mathrm{D}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{E}\!:\!\mathrm{E}\!:\!\mathrm{I} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{I}\!:\!\mathrm{E} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{J}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O}\!:\!\mathrm{D})
\\
\\
−
& &
\times
\times
\\
\\
−
& &
(\mathrm{C}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{E}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{O})
(\mathrm{C}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{E}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{I}\!:\!\mathrm{O} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{J}\!:\!\mathrm{O})
\\
\\
−
& &
\times
\times
\\
\\
−
& &
(\mathrm{B} ~+\!\!,~ \mathrm{D} ~+\!\!,~ \mathrm{E})
(\mathrm{B} ~+\!\!,~ \mathrm{D} ~+\!\!,~ \mathrm{E})
\end{array}</math>
\end{array}</math>