| Line 1,867: | Line 1,867: | 
|  | |} |  | |} | 
|  |  |  |  | 
| − | : n,w ="noble that iswoman"
 | + | {| align="center" cellspacing="6" width="90%" | 
|  | + | | | 
|  | + | <math>\begin{array}{lll} | 
|  | + | \mathit{w},\!\mathit{n} | 
|  | + | & = & | 
|  | + | \text{woman that is noble} | 
|  | + | \\[6pt] | 
|  | + | & = & | 
|  | + | (\mathrm{B}\!:\!\mathrm{B} ~+\!\!,~ \mathrm{D}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{E}\!:\!\mathrm{E}) | 
|  | + | \\ | 
|  | + | & & | 
|  | + | \times | 
|  | + | \\ | 
|  | + | & & | 
|  | + | (\mathrm{C} ~+\!\!,~ \mathrm{D} ~+\!\!,~ \mathrm{O}) | 
|  | + | \\[6pt] | 
|  | + | & = & | 
|  | + | \mathrm{D} | 
|  | + | \end{array}</math> | 
|  | + | |} | 
|  |  |  |  | 
| − | :: = (C:C +, D:D +, O:O)(B +, D +, E)
 | + | {| align="center" cellspacing="6" width="90%" | 
| − |   | + | | | 
| − | :: = D
 | + | <math>\begin{array}{lll} | 
| − |   | + | \mathit{n},\!\mathit{m} | 
| − | : w,n = "woman that is noble"
 | + | & = & | 
| − |   | + | \text{noble that is a man} | 
| − | :: = (B:B +, D:D +, E:E)(C +, D +, O)
 | + | \\[6pt] | 
| − |   | + | & = & | 
| − | :: = D
 | + | (\mathrm{C}\!:\!\mathrm{C} ~+\!\!,~ \mathrm{D}\!:\!\mathrm{D} ~+\!\!,~ \mathrm{O}\!:\!\mathrm{O}) | 
|  | + | \\ | 
|  | + | & & | 
|  | + | \times | 
|  | + | \\ | 
|  | + | & & | 
|  | + | (\mathrm{B} ~+\!\!,~ \mathrm{D} ~+\!\!,~ \mathrm{E}) | 
|  | + | \\[6pt] | 
|  | + | & = & | 
|  | + | \mathrm{D} | 
|  | + | \end{array}</math> | 
|  | + | |} | 
|  |  |  |  | 
|  | ==Selection 9== |  | ==Selection 9== |