Line 801: |
Line 801: |
| | | | | |
| <math>\begin{array}{l} | | <math>\begin{array}{l} |
− | \langle\!\langle\, \text{lover of}\, \underline{~~~~}\, \rangle\!\rangle | + | ^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime} |
| \\[6pt] | | \\[6pt] |
− | \langle\!\langle\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, \rangle\!\rangle | + | ^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime} |
| \\[6pt] | | \\[6pt] |
− | \langle\!\langle\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, \rangle\!\rangle | + | ^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime} |
| \end{array}</math> | | \end{array}</math> |
| |} | | |} |
Line 813: |
Line 813: |
| In other words: | | In other words: |
| | | |
− | :* The relative term <math>\langle\!\langle\, \text{lover of}\, \underline{~~~~}\, \rangle\!\rangle</math> is derived by abstracting the absolute term <math>\langle\!\langle\, \text{Emilia}\, \rangle\!\rangle</math> from the absolute term <math>\langle\!\langle\, \text{lover of Emilia}\, \rangle\!\rangle.</math> Since Iago is a lover of Emilia, the relate-correlate pair <math>\mathrm{Iago}:\mathrm{Emilia}\!</math> that we abbreviate as <math>\mathrm{I}:\mathrm{E}\!</math> is a summand of the dyadic relation that corresponds to the relative term <math>\langle\!\langle\, \text{lover of}\, \underline{~~~~}\, \rangle\!\rangle.</math>
| + | {| align="center" cellspacing="6" width="90%" |
| + | | |
| + | <p>The relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}</math><p> |
| | | |
− | :* The relative term <math>\langle\!\langle\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, \rangle\!\rangle</math> is derived by abstracting the absolute terms <math>\langle\!\langle\, \text{Othello}\, \rangle\!\rangle</math> and <math>\langle\!\langle\, \text{Desdemona}\, \rangle\!\rangle</math> from the absolute term <math>\langle\!\langle\, \text{betrayer to Othello of Desdemona}\, \rangle\!\rangle.</math> In as much as Iago is a betrayer to Othello of Desdemona, the relate-correlate-correlate triple <math>\mathrm{I}:\mathrm{O}:\mathrm{D}</math> belongs to the triadic relation that corresponds to the relative term <math>\langle\!\langle\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, \rangle\!\rangle.</math>
| + | <p>is formed by abstracting the absolute term <math>^{\backprime\backprime}\, \text{Emilia}\, ^{\prime\prime}</math></p> |
| | | |
− | :* The relative term "winner over of —— to —— from ——" can be constructed by abstracting the absolute terms "Othello", "Iago", and "Cassio" from the absolute term "winner over of Othello to Iago from Cassio". Since Iago is a winner over of Othello to Iago from Cassio, the elementary relative term <math>\mathrm{I}\!:\!\mathrm{O}\!:\!\mathrm{I}\!:\!\mathrm{C}\!</math> belongs to the relative term "winner over of —— to —— from ——". | + | <p>from the absolute term <math>^{\backprime\backprime}\, \text{lover of Emilia}\, ^{\prime\prime}.</math></p> |
| + | |
| + | <p>Iago is a lover of Emilia, so the relate-correlate pair <math>\mathrm{I}:\mathrm{E}\!</math><p> |
| + | |
| + | <p>belongs to the dyadic relation that corresponds to the relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> |
| + | |- |
| + | | |
| + | <p>The relative term <math>^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}</math></p> |
| + | |
| + | <p>is formed by abstracting the absolute terms <math>^{\backprime\backprime}\, \text{Othello}\, ^{\prime\prime}</math> and <math>^{\backprime\backprime}\, \text{Desdemona}\, ^{\prime\prime}</math></p> |
| + | |
| + | <p>from the absolute term <math>^{\backprime\backprime}\, \text{betrayer to Othello of Desdemona}\, ^{\prime\prime}.</math></p> |
| + | |
| + | <p>Iago is a betrayer to Othello of Desdemona, so the relate-correlate-correlate triple <math>\mathrm{I}:\mathrm{O}:\mathrm{D}\!</math></p> |
| + | |
| + | <p>belongs to the triadic relation that corresponds to the relative term <math>^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> |
| + | |- |
| + | | |
| + | <p>The relative term <math>^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}</math></p> |
| + | |
| + | <p>is formed by abstracting the absolute terms <math>^{\backprime\backprime}\, \text{Othello}\, ^{\prime\prime},</math> <math>^{\backprime\backprime}\, \text{Iago}\, ^{\prime\prime},</math> and <math>^{\backprime\backprime}\, \text{Cassio}\, ^{\prime\prime}</math></p> |
| + | |
| + | <p>from the absolute term <math>^{\backprime\backprime}\, \text{winner over of Othello to Iago from Cassio}\, ^{\prime\prime}.</math></p> |
| + | |
| + | <p>Iago is a winner over of Othello to Iago from Cassio, so the elementary relative term <math>\mathrm{I}:\mathrm{O}:\mathrm{I}:\mathrm{C}\!</math></p> |
| + | |
| + | <p>belongs to the tetradic relation that corresponds to the relative term <math>^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}.</math></p> |
| + | |} |
| | | |
| ===Commentary Note 8.3=== | | ===Commentary Note 8.3=== |