Changes

MyWikiBiz, Author Your Legacy — Tuesday November 12, 2024
Jump to navigationJump to search
Line 801: Line 801:  
|
 
|
 
<math>\begin{array}{l}
 
<math>\begin{array}{l}
\langle\!\langle\, \text{lover of}\, \underline{~~~~}\, \rangle\!\rangle
+
^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}
 
\\[6pt]
 
\\[6pt]
\langle\!\langle\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, \rangle\!\rangle
+
^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}
 
\\[6pt]
 
\\[6pt]
\langle\!\langle\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, \rangle\!\rangle
+
^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 813: Line 813:  
In other words:
 
In other words:
   −
:* The relative term <math>\langle\!\langle\, \text{lover of}\, \underline{~~~~}\, \rangle\!\rangle</math> is derived by abstracting the absolute term <math>\langle\!\langle\, \text{Emilia}\, \rangle\!\rangle</math> from the absolute term <math>\langle\!\langle\, \text{lover of Emilia}\, \rangle\!\rangle.</math>  Since Iago is a lover of Emilia, the relate-correlate pair <math>\mathrm{Iago}:\mathrm{Emilia}\!</math> that we abbreviate as <math>\mathrm{I}:\mathrm{E}\!</math> is a summand of the dyadic relation that corresponds to the relative term <math>\langle\!\langle\, \text{lover of}\, \underline{~~~~}\, \rangle\!\rangle.</math>
+
{| align="center" cellspacing="6" width="90%"
 +
|
 +
<p>The relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}</math><p>
   −
:* The relative term <math>\langle\!\langle\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, \rangle\!\rangle</math> is derived by abstracting the absolute terms <math>\langle\!\langle\, \text{Othello}\, \rangle\!\rangle</math> and <math>\langle\!\langle\, \text{Desdemona}\, \rangle\!\rangle</math> from the absolute term <math>\langle\!\langle\, \text{betrayer to Othello of Desdemona}\, \rangle\!\rangle.</math>  In as much as Iago is a betrayer to Othello of Desdemona, the relate-correlate-correlate triple <math>\mathrm{I}:\mathrm{O}:\mathrm{D}</math> belongs to the triadic relation that corresponds to the relative term <math>\langle\!\langle\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, \rangle\!\rangle.</math>
+
<p>is formed by abstracting the absolute term <math>^{\backprime\backprime}\, \text{Emilia}\, ^{\prime\prime}</math></p>
   −
:* The relative term "winner over of&nbsp;&mdash;&mdash; to&nbsp;&mdash;&mdash; from&nbsp;&mdash;&mdash;" can be constructed by abstracting the absolute terms "Othello", "Iago", and "Cassio" from the absolute term "winner over of Othello to Iago from Cassio". Since Iago is a winner over of Othello to Iago from Cassio, the elementary relative term <math>\mathrm{I}\!:\!\mathrm{O}\!:\!\mathrm{I}\!:\!\mathrm{C}\!</math> belongs to the relative term "winner over of&nbsp;&mdash;&mdash; to&nbsp;&mdash;&mdash; from&nbsp;&mdash;&mdash;".
+
<p>from the absolute term <math>^{\backprime\backprime}\, \text{lover of Emilia}\, ^{\prime\prime}.</math></p>
 +
 
 +
<p>Iago is a lover of Emilia, so the relate-correlate pair <math>\mathrm{I}:\mathrm{E}\!</math><p>
 +
 
 +
<p>belongs to the dyadic relation that corresponds to the relative term <math>^{\backprime\backprime}\, \text{lover of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p>
 +
|-
 +
|
 +
<p>The relative term <math>^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}</math></p>
 +
 
 +
<p>is formed by abstracting the absolute terms <math>^{\backprime\backprime}\, \text{Othello}\, ^{\prime\prime}</math> and <math>^{\backprime\backprime}\, \text{Desdemona}\, ^{\prime\prime}</math></p>
 +
 
 +
<p>from the absolute term <math>^{\backprime\backprime}\, \text{betrayer to Othello of Desdemona}\, ^{\prime\prime}.</math></p>
 +
 
 +
<p>Iago is a betrayer to Othello of Desdemona, so the relate-correlate-correlate triple <math>\mathrm{I}:\mathrm{O}:\mathrm{D}\!</math></p>
 +
 
 +
<p>belongs to the triadic relation that corresponds to the relative term <math>^{\backprime\backprime}\, \text{betrayer to}\, \underline{~~~~}\, \text{of}\, \underline{~~~~}\, ^{\prime\prime}.</math></p>
 +
|-
 +
|
 +
<p>The relative term <math>^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}</math></p>
 +
 
 +
<p>is formed by abstracting the absolute terms <math>^{\backprime\backprime}\, \text{Othello}\, ^{\prime\prime},</math> <math>^{\backprime\backprime}\, \text{Iago}\, ^{\prime\prime},</math> and <math>^{\backprime\backprime}\, \text{Cassio}\, ^{\prime\prime}</math></p>
 +
 
 +
<p>from the absolute term <math>^{\backprime\backprime}\, \text{winner over of Othello to Iago from Cassio}\, ^{\prime\prime}.</math></p>
 +
 
 +
<p>Iago is a winner over of Othello to Iago from Cassio, so the elementary relative term <math>\mathrm{I}:\mathrm{O}:\mathrm{I}:\mathrm{C}\!</math></p>
 +
 
 +
<p>belongs to the tetradic relation that corresponds to the relative term <math>^{\backprime\backprime}\, \text{winner over of}\, \underline{~~~~}\, \text{to}\, \underline{~~~~}\, \text{from}\, \underline{~~~~}\, ^{\prime\prime}.</math></p>
 +
|}
    
===Commentary Note 8.3===
 
===Commentary Note 8.3===
12,080

edits

Navigation menu