Changes

MyWikiBiz, Author Your Legacy — Saturday December 28, 2024
Jump to navigationJump to search
Line 2,572: Line 2,572:     
====Output Conditions for Tape Input "0"====
 
====Output Conditions for Tape Input "0"====
 +
 +
Let <math>p_0\!</math> be the proposition that we get by conjoining the proposition that describes the initial conditions for tape input "0" with the proposition that describes the truncated turing machine <math>\operatorname{Stunt}(2).</math>  As it turns out, <math>p_0\!</math> has a single satisfying interpretation, and this is represented as a singular proposition in terms of its positive logical features in the following display:
 +
 +
<br>
    
<pre>
 
<pre>
Let P_0 be the proposition that we get by conjoining
  −
the proposition that describes the initial conditions
  −
for tape input "0" with the proposition that describes
  −
the truncated turing machine Stunt(2).  As it turns out,
  −
P_0 has a single satisfying interpretation, and this is
  −
represented as a singular proposition in terms of its
  −
positive logical features in the following display:
  −
   
o-------------------------------------------------o
 
o-------------------------------------------------o
 
|                                                |
 
|                                                |
Line 2,601: Line 2,597:  
|                                                |
 
|                                                |
 
o-------------------------------------------------o
 
o-------------------------------------------------o
 +
</pre>
 +
 +
<br>
    
The Output Conditions for Tape Input "0" can be read as follows:
 
The Output Conditions for Tape Input "0" can be read as follows:
Line 2,622: Line 2,621:  
   At the time p_2, cell r_2 contains "#".
 
   At the time p_2, cell r_2 contains "#".
   −
The output of Stunt(2) being the symbol that rests under
+
The output of <math>\operatorname{Stunt}(2)</math> being the symbol that rests under the tape head <math>\operatorname{H}</math> if and when the machine <math>\operatorname{M}</math> reaches one of its resting states, we get the result that <math>\operatorname{Parity}(0) = 0.</math>
the tape head H if and when the machine M reaches one of
  −
its resting states, we get the result that Parity(0) = 0.
  −
</pre>
      
====Output Conditions for Tape Input "1"====
 
====Output Conditions for Tape Input "1"====
12,080

edits

Navigation menu