Changes

MyWikiBiz, Author Your Legacy — Tuesday November 19, 2024
Jump to navigationJump to search
descriptive headings
Line 1,825: Line 1,825:  
The ''tape head'' (that is, the ''read unit'') will be called <math>\operatorname{H}.</math>  The ''registers'' are also called ''tape cells'' or ''tape squares''.
 
The ''tape head'' (that is, the ''read unit'') will be called <math>\operatorname{H}.</math>  The ''registers'' are also called ''tape cells'' or ''tape squares''.
   −
==Note 22==
+
===Finite Approximations===
    
To see how each finite approximation to a given turing machine can be given a purely propositional description, one fixes the parameter <math>k\!</math> and limits the rest of the discussion to describing <math>\operatorname{Stilt}(k),</math> which is not really a full-fledged TM anymore but just a finite automaton in disguise.
 
To see how each finite approximation to a given turing machine can be given a purely propositional description, one fixes the parameter <math>k\!</math> and limits the rest of the discussion to describing <math>\operatorname{Stilt}(k),</math> which is not really a full-fledged TM anymore but just a finite automaton in disguise.
Line 1,921: Line 1,921:  
|}
 
|}
   −
==Initial Conditions==
+
===Initial Conditions===
    
Given but a single free square on the tape, there are just two different sets of initial conditions for <math>\operatorname{Stunt}(2),</math> the finite approximation to the parity turing machine that we are presently considering.
 
Given but a single free square on the tape, there are just two different sets of initial conditions for <math>\operatorname{Stunt}(2),</math> the finite approximation to the parity turing machine that we are presently considering.
   −
===Initial Conditions for Tape Input "0"===
+
====Initial Conditions for Tape Input "0"====
    
The following conjunction of 5 basic propositions describes the initial conditions when <math>\operatorname{Stunt}(2)</math> is started with an input of "0" in its free square:
 
The following conjunction of 5 basic propositions describes the initial conditions when <math>\operatorname{Stunt}(2)</math> is started with an input of "0" in its free square:
Line 1,955: Line 1,955:  
|}
 
|}
   −
===Initial Conditions for Tape Input "1"===
+
====Initial Conditions for Tape Input "1"====
    
The following conjunction of 5 basic propositions describes the initial conditions when <math>\operatorname{Stunt}(2)</math> is started with an input of "1" in its free square:
 
The following conjunction of 5 basic propositions describes the initial conditions when <math>\operatorname{Stunt}(2)</math> is started with an input of "1" in its free square:
Line 1,985: Line 1,985:  
|}
 
|}
   −
==Propositional Program==
+
===Propositional Program===
    
A complete description of <math>\operatorname{Stunt}(2)</math> in propositional form is obtained by conjoining one of the above choices for initial conditions with all of the following sets of propositions, that serve in effect as a simple type of ''declarative program'', telling us all that we need to know about the anatomy and behavior of the truncated TM in question.
 
A complete description of <math>\operatorname{Stunt}(2)</math> in propositional form is obtained by conjoining one of the above choices for initial conditions with all of the following sets of propositions, that serve in effect as a simple type of ''declarative program'', telling us all that we need to know about the anatomy and behavior of the truncated TM in question.
   −
===Mediate Conditions===
+
====Mediate Conditions====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,004: Line 2,004:  
|}
 
|}
   −
===Terminal Conditions===
+
====Terminal Conditions====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,013: Line 2,013:  
|}
 
|}
   −
===State Partition===
+
====State Partition====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,026: Line 2,026:  
|}
 
|}
   −
===Register Partition===
+
====Register Partition====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,039: Line 2,039:  
|}
 
|}
   −
===Symbol Partition===
+
====Symbol Partition====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,064: Line 2,064:  
|}
 
|}
   −
===Interaction Conditions===
+
====Interaction Conditions====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,107: Line 2,107:  
|}
 
|}
   −
===Transition Relations===
+
====Transition Relations====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,146: Line 2,146:  
|}
 
|}
   −
==Interpretation of the Propositional Program==
+
===Interpretation of the Propositional Program===
    
Let us now run through the propositional specification of <math>\operatorname{Stunt}(2),</math> our truncated TM, and paraphrase what it says in ordinary language.
 
Let us now run through the propositional specification of <math>\operatorname{Stunt}(2),</math> our truncated TM, and paraphrase what it says in ordinary language.
   −
===Mediate Conditions===
+
====Mediate Conditions====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,212: Line 2,212:  
|}
 
|}
   −
===Terminal Conditions===
+
====Terminal Conditions====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,250: Line 2,250:  
|}
 
|}
   −
===State Partition===
+
====State Partition====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,300: Line 2,300:  
|}
 
|}
   −
===Register Partition===
+
====Register Partition====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,322: Line 2,322:  
|}
 
|}
   −
===Symbol Partition===
+
====Symbol Partition====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,358: Line 2,358:  
|}
 
|}
   −
===Interaction Conditions===
+
====Interaction Conditions====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,445: Line 2,445:  
The eighteen clauses of the Interaction Conditions simply impose one such constraint on symbol changes for each combination of the times <math>p_0, p_1,\!</math> registers <math>r_0, r_1, r_2,\!</math> and symbols <math>s_0, s_1, s_\#.\!</math>
 
The eighteen clauses of the Interaction Conditions simply impose one such constraint on symbol changes for each combination of the times <math>p_0, p_1,\!</math> registers <math>r_0, r_1, r_2,\!</math> and symbols <math>s_0, s_1, s_\#.\!</math>
   −
===Transition Relations===
+
====Transition Relations====
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,512: Line 2,512:  
|}
 
|}
   −
==Note 32==
+
===Note 32===
    
<pre>
 
<pre>
Line 2,564: Line 2,564:  
</pre>
 
</pre>
   −
==Note 33==
+
===Note 33===
    
<pre>
 
<pre>
12,080

edits

Navigation menu