Line 1,217: |
Line 1,217: |
| {| align="center" cellpadding="8" width="90%" | | {| align="center" cellpadding="8" width="90%" |
| | | | | |
− | <math>\begin{array}{lrrrrrrrr} | + | <math>\begin{matrix} |
| \operatorname{d}f | | \operatorname{d}f |
| & = & \texttt{uv} \cdot \texttt{0} & + & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)} | | & = & \texttt{uv} \cdot \texttt{0} & + & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)} |
| \\ \\ | | \\ \\ |
| & = & & & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)} | | & = & & & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)} |
− | \end{array}</math> | + | \end{matrix}</math> |
| |} | | |} |
| | | |
Line 1,229: |
Line 1,229: |
| {| align="center" cellpadding="8" width="90%" | | {| align="center" cellpadding="8" width="90%" |
| | | | | |
− | <math>\begin{array}{lrrrrrrrr} | + | <math>\begin{matrix} |
| \operatorname{r}f | | \operatorname{r}f |
| & = & \texttt{uv} \cdot \texttt{du~dv} & + & \texttt{u(v)} \cdot \texttt{du~dv} & + & \texttt{(u)v} \cdot \texttt{du~dv} & + & \texttt{(u)(v)} \cdot \texttt{du dv} | | & = & \texttt{uv} \cdot \texttt{du~dv} & + & \texttt{u(v)} \cdot \texttt{du~dv} & + & \texttt{(u)v} \cdot \texttt{du~dv} & + & \texttt{(u)(v)} \cdot \texttt{du dv} |
| \\ \\ | | \\ \\ |
| & = & \texttt{du~dv} | | & = & \texttt{du~dv} |
− | \end{array}</math> | + | \end{matrix}</math> |
| |} | | |} |
| | | |
Line 1,276: |
Line 1,276: |
| o---------------------------------------o | | o---------------------------------------o |
| Figure 1.1. f = ((u)(v)) | | Figure 1.1. f = ((u)(v)) |
| + | </pre> |
| + | |
| + | <br> |
| | | |
| + | <pre> |
| o---------------------------------------o | | o---------------------------------------o |
| | | | | | | |
Line 1,315: |
Line 1,319: |
| o---------------------------------------o | | o---------------------------------------o |
| Figure 1.2. Ef = ((u + du)(v + dv)) | | Figure 1.2. Ef = ((u + du)(v + dv)) |
| + | </pre> |
| | | |
| + | <br> |
| + | |
| + | <pre> |
| o---------------------------------------o | | o---------------------------------------o |
| | | | | | | |
Line 1,354: |
Line 1,362: |
| o---------------------------------------o | | o---------------------------------------o |
| Figure 1.3. Difference Map Df = f + Ef | | Figure 1.3. Difference Map Df = f + Ef |
| + | </pre> |
| + | |
| + | <br> |
| | | |
| + | <pre> |
| o---------------------------------------o | | o---------------------------------------o |
| | | | | | | |
Line 1,393: |
Line 1,405: |
| o---------------------------------------o | | o---------------------------------------o |
| Figure 1.4. Linear Proxy df for Df | | Figure 1.4. Linear Proxy df for Df |
| + | </pre> |
| | | |
| + | <br> |
| + | |
| + | <pre> |
| o---------------------------------------o | | o---------------------------------------o |
| | | | | | | |
Line 1,432: |
Line 1,448: |
| o---------------------------------------o | | o---------------------------------------o |
| Figure 1.5. Remainder rf = Df + df | | Figure 1.5. Remainder rf = Df + df |
| + | </pre> |
| | | |
− | Computation Summary for g<u, v> = ((u, v)) | + | ===Computation Summary : <math>g(u, v) = \texttt{((u,~v))}</math>=== |
| | | |
| Exercise for the Reader. | | Exercise for the Reader. |
− | </pre>
| |
| | | |
| ==Note 19== | | ==Note 19== |