Changes

Line 1,217: Line 1,217:  
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
<math>\begin{array}{lrrrrrrrr}
+
<math>\begin{matrix}
 
\operatorname{d}f
 
\operatorname{d}f
 
& = & \texttt{uv} \cdot \texttt{0} & + & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)}
 
& = & \texttt{uv} \cdot \texttt{0} & + & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)}
 
\\ \\
 
\\ \\
 
& = & & & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)}
 
& = & & & \texttt{u(v)} \cdot \texttt{du} & + & \texttt{(u)v} \cdot \texttt{dv} & + & \texttt{(u)(v)} \cdot \texttt{(du, dv)}
\end{array}</math>
+
\end{matrix}</math>
 
|}
 
|}
   Line 1,229: Line 1,229:  
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
<math>\begin{array}{lrrrrrrrr}
+
<math>\begin{matrix}
 
\operatorname{r}f
 
\operatorname{r}f
 
& = & \texttt{uv} \cdot \texttt{du~dv} & + & \texttt{u(v)} \cdot \texttt{du~dv} & + & \texttt{(u)v} \cdot \texttt{du~dv} & + & \texttt{(u)(v)} \cdot \texttt{du dv}
 
& = & \texttt{uv} \cdot \texttt{du~dv} & + & \texttt{u(v)} \cdot \texttt{du~dv} & + & \texttt{(u)v} \cdot \texttt{du~dv} & + & \texttt{(u)(v)} \cdot \texttt{du dv}
 
\\ \\
 
\\ \\
 
& = & \texttt{du~dv}
 
& = & \texttt{du~dv}
\end{array}</math>
+
\end{matrix}</math>
 
|}
 
|}
   Line 1,276: Line 1,276:  
o---------------------------------------o
 
o---------------------------------------o
 
Figure 1.1.  f = ((u)(v))
 
Figure 1.1.  f = ((u)(v))
 +
</pre>
 +
 +
<br>
    +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 1,315: Line 1,319:  
o---------------------------------------o
 
o---------------------------------------o
 
Figure 1.2.  Ef = ((u + du)(v + dv))
 
Figure 1.2.  Ef = ((u + du)(v + dv))
 +
</pre>
    +
<br>
 +
 +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 1,354: Line 1,362:  
o---------------------------------------o
 
o---------------------------------------o
 
Figure 1.3.  Difference Map Df = f + Ef
 
Figure 1.3.  Difference Map Df = f + Ef
 +
</pre>
 +
 +
<br>
    +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 1,393: Line 1,405:  
o---------------------------------------o
 
o---------------------------------------o
 
Figure 1.4.  Linear Proxy df for Df
 
Figure 1.4.  Linear Proxy df for Df
 +
</pre>
    +
<br>
 +
 +
<pre>
 
o---------------------------------------o
 
o---------------------------------------o
 
|                                      |
 
|                                      |
Line 1,432: Line 1,448:  
o---------------------------------------o
 
o---------------------------------------o
 
Figure 1.5.  Remainder rf = Df + df
 
Figure 1.5.  Remainder rf = Df + df
 +
</pre>
   −
Computation Summary for g<u, v> = ((u, v))
+
===Computation Summary : <math>g(u, v) = \texttt{((u,~v))}</math>===
    
Exercise for the Reader.
 
Exercise for the Reader.
</pre>
      
==Note 19==
 
==Note 19==
12,089

edits