Line 451:
Line 451:
|
|
<math>\begin{array}{ccccc}
<math>\begin{array}{ccccc}
−
x & = & f(u, v) & = & \underline{((}~ u ~\underline{)(}~ v ~\underline{))}
+
x & = & f(u, v) & = & \texttt{((u)(v))}
\\ \\
\\ \\
−
y & = & g(u, v) & = & \underline{((}~ u ~,~ v ~\underline{))}
+
y & = & g(u, v) & = & \texttt{((u,~v))}
\\ \\
\\ \\
−
(x, y) & = & F(u, v) & = & ( ~\underline{((}~ u ~\underline{)(}~ v ~\underline{))}~ , ~\underline{((}~ u ~,~ v ~\underline{))}~ )
+
(x, y) & = & F(u, v) & = & ( ~\texttt{((u)(v))}~ , ~\texttt{((u,~v))}~ )
\end{array}</math>
\end{array}</math>
|}
|}
Line 478:
Line 478:
|
|
<math>\begin{array}{ccccc}
<math>\begin{array}{ccccc}
−
u' & = & f(u, v) & = & \underline{((}~ u ~\underline{)(}~ v ~\underline{))}
+
u' & = & f(u, v) & = & \texttt{((u)(v))}
\\ \\
\\ \\
−
v' & = & g(u, v) & = & \underline{((}~ u ~,~ v ~\underline{))}
+
v' & = & g(u, v) & = & \texttt{((u,~v))}
\\ \\
\\ \\
−
(u', v') & = & F(u, v) & = & ( ~\underline{((}~ u ~\underline{)(}~ v ~\underline{))}~ , ~\underline{((}~ u ~,~ v ~\underline{))}~ )
+
(u', v') & = & F(u, v) & = & ( ~\texttt{((u)(v))}~ , ~\texttt{((u,~v))}~ )
\end{array}</math>
\end{array}</math>
|}
|}