MyWikiBiz, Author Your Legacy — Wednesday November 05, 2025
Jump to navigationJump to search
403 bytes added
, 04:10, 9 March 2009
| Line 650: |
Line 650: |
| | | | |
| | In their application to this logical transformation the operators <math>\operatorname{E}</math> and <math>\operatorname{D}</math> respectively produce the ''enlarged map'' <math>\operatorname{E}F = (\operatorname{E}f, \operatorname{E}g)</math> and the ''difference map'' <math>\operatorname{D}F = (\operatorname{D}f, \operatorname{D}g),</math> whose components can be given as follows, if the reader, in the absence of a special format for logical parentheses, can forgive syntactically bilingual phrases: | | In their application to this logical transformation the operators <math>\operatorname{E}</math> and <math>\operatorname{D}</math> respectively produce the ''enlarged map'' <math>\operatorname{E}F = (\operatorname{E}f, \operatorname{E}g)</math> and the ''difference map'' <math>\operatorname{D}F = (\operatorname{D}f, \operatorname{D}g),</math> whose components can be given as follows, if the reader, in the absence of a special format for logical parentheses, can forgive syntactically bilingual phrases: |
| | + | |
| | + | {| align="center" cellpadding="8" width="90%" |
| | + | | |
| | + | <math>\begin{array}{lll} |
| | + | \operatorname{E}f & = & \underline{((}~ u + du ~\underline{)(}~ v + dv ~\underline{))} |
| | + | \\ \\ |
| | + | \operatorname{E}g & = & \underline{((}~ u + du ~,~ v + dv ~\underline{))} |
| | + | \\ \\ |
| | + | \operatorname{D}f & = & \underline{((}~ u ~\underline{)(}~ v ~\underline{))}~ + ~\underline{((}~ u + du ~\underline{)(}~ v + dv ~\underline{))} |
| | + | \\ \\ |
| | + | \operatorname{D}g & = & \underline{((}~ u ~,~ v ~\underline{))}~ + ~\underline{((}~ u + du ~,~ v + dv ~\underline{))} |
| | + | \end{array}</math> |
| | + | |} |
| | | | |
| | <pre> | | <pre> |
| − | Ef = ((u + du)(v + dv))
| |
| − |
| |
| − | Eg = ((u + du, v + dv))
| |
| − |
| |
| − | Df = ((u)(v)) + ((u + du)(v + dv))
| |
| − |
| |
| − | Dg = ((u, v)) + ((u + du, v + dv))
| |
| − |
| |
| | But these initial formulas are purely definitional, | | But these initial formulas are purely definitional, |
| | and help us little to understand either the purpose | | and help us little to understand either the purpose |