Changes

MyWikiBiz, Author Your Legacy — Tuesday September 09, 2025
Jump to navigationJump to search
→‎Note 7: markup
Line 174: Line 174:  
==Note 7==
 
==Note 7==
   −
<pre>
+
Here are the <math>4^\text{th}\!</math> gear curves over the 1-feature universe <math>X = \langle x \rangle</math> arranged in the form of tabular arrays, listing the extended state vectors <math>(x, dx, d^2 x, d^3 x, d^4 x)\!</math> as they occur in one cyclic period of each orbit.
Here are the 4^th gear curves over the 1-feature universe
  −
X = <|x|> arranged in the form of tabular arrays, listing
  −
the extended state vectors <x, dx, d^2.x, d^3.x, d^4.x>
  −
as they occur in one cyclic period of each orbit.
     −
d d d d d
+
{| align="center" cellpadding="8" style="text-align:center"
0 1 2 3 4
+
| <math>\text{Orbit 1}\!</math>
x x x x x
+
|-
 +
|
 +
<math>\begin{array}{c|ccccc}
 +
t & d^0 x & d^1 x & d^2 x & d^3 x & d^4 \\
 +
\\
 +
0 &    0 &    0 &    0 &    0 &  1 \\
 +
1 &    0 &    0 &    0 &    1 &  1 \\
 +
2 &    0 &    0 &    1 &    0 &  1 \\
 +
3 &    0 &    1 &    1 &    1 &  1 \\
 +
4 &    1 &    0 &    0 &    0 &  1 \\
 +
5 &    1 &    0 &    0 &    1 &  1 \\
 +
6 &    1 &    0 &    1 &    0 &  1 \\
 +
7 &    1 &    1 &    1 &    1 &  1 \\
 +
\end{array}</math></p>
 +
|}
   −
Orbit 1
+
<br>
   −
0 0 0 0 1
+
{| align="center" cellpadding="8" style="text-align:center"
0 0 0 1 1
+
| <math>\text{Orbit 2}\!</math>
0 0 1 0 1
+
|-
0 1 1 1 1
+
|
1 0 0 0 1
+
<math>\begin{array}{c|ccccc}
1 0 0 1 1
+
t & d^0 x & d^1 x & d^2 x & d^3 x & d^4 \\
1 0 1 0 1
+
\\
1 1 1 1 1
+
0 &    1 &    1 &    0 &    0 1 \\
 
+
1 &    0 &    1 &    0 &    1 1 \\
Orbit 2
+
2 &    1 &    1 &    1 &    0 1 \\
 
+
3 &    0 &    0 &    1 &    1 1 \\
1 1 0 0 1
+
4 &    0 &    1 &    0 &    0 1 \\
0 1 0 1 1
+
5 &    1 &    1 &    0 &    1 1 \\
1 1 1 0 1
+
6 &    0 &    1 &    1 &    0 1 \\
0 0 1 1 1
+
7 &    1 &    0 &    1 &    1 1 \\
0 1 0 0 1
+
\end{array}</math></p>
1 1 0 1 1
+
|}
0 1 1 0 1
  −
1 0 1 1 1
      +
<pre>
 
In this arrangement, the temporal ordering of states
 
In this arrangement, the temporal ordering of states
 
can be reckoned by a kind of "parallel round-up rule".
 
can be reckoned by a kind of "parallel round-up rule".
12,089

edits

Navigation menu