Changes

MyWikiBiz, Author Your Legacy — Saturday November 30, 2024
Jump to navigationJump to search
→‎Note 3: markup
Line 44: Line 44:  
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
<math>\begin{array}{ll}
+
<math>\begin{array}{cc}
 
t & x \\
 
t & x \\
 
0 & 0 \\
 
0 & 0 \\
Line 61: Line 61:  
"Aha!" we say, and think we see the way of things, writing down the rule <math>x' = (x),\!</math> where <math>x'\!</math> is the state that comes next after <math>x,\!</math> and <math>(x)\!</math> is the negation of <math>x\!</math> in boolean logic.
 
"Aha!" we say, and think we see the way of things, writing down the rule <math>x' = (x),\!</math> where <math>x'\!</math> is the state that comes next after <math>x,\!</math> and <math>(x)\!</math> is the negation of <math>x\!</math> in boolean logic.
   −
<pre>
+
Another way to detect patterns is to write out a table of finite differences. For this example, we would get:
Another way to detect patterns is to write out a table
  −
of finite differences. `For this example, we would get:
     −
x dx d2x
+
{| align="center" cellpadding="8" width="90%"
 
+
|
0 1 0 ...
+
<math>\begin{array}{ccccc}
1 1 0
+
t &      x &    dx &  d^2 x & \ldots \\
0 1 0
+
0 &      0 &      1 &      0 & \ldots \\
1 1 0
+
1 &      1 &      1 &      0 &        \\
0 1 0
+
2 &      0 &      1 &      0 &        \\
1 1 0
+
3 &      1 &      1 &      0 &        \\
0 1
+
4 &      0 &      1 &      0 &        \\
1
+
5 &      1 &      1 &      0 &        \\
...
+
6 &      0 &      1 &      0 &        \\
 +
7 &      1 &      1 &      0 &        \\
 +
8 &      0 &      1 & \ldots &        \\
 +
9 & \ldots & \ldots & \ldots &        \\
 +
\end{array}</math>
 +
|}
    
And of course, all the higher order differences are zero.
 
And of course, all the higher order differences are zero.
   −
This leads to thinking of X as having an extended state
+
This leads to thinking of <math>X\!</math> as having an extended state <math>(x, dx, d^2 x, \ldots, d^k x),</math> and this additional language gives us the facility of describing state transitions in terms of the various orders of differences. For example, the rule <math>x' = (x)\!</math> can now be expressed by the rule <math>dx = 1.\!</math>
<x, dx, d^2.x, ..., d^k.x>, and this additional language
  −
gives us the facility of describing state transitions in
  −
terms of the various orders of differences. `For example,
  −
the rule x' = (x) can now be expressed by the rule dx = 1.
     −
I'll leave you to muse on
+
I'll leave you to muse on the possibilities of that.
the possibilities of that.
  −
</pre>
      
==Note 4==
 
==Note 4==
12,080

edits

Navigation menu