| Line 1,589: | Line 1,589: | 
|  | In the following definitions, let <math>L \subseteq O \times S \times I,</math> let <math>S = I,\!</math> and let <math>x, y \in S.\!</math> |  | In the following definitions, let <math>L \subseteq O \times S \times I,</math> let <math>S = I,\!</math> and let <math>x, y \in S.\!</math> | 
|  |  |  |  | 
| − | <pre>
 | + | Recall the definition of <math>\operatorname{Con} (L),</math> the connotative component of a sign relation <math>L,\!</math> in the following form: | 
| − | Recall the definition of Con(R), the connotative component ofR, in the following form: | + |   | 
|  | + | {| align="center" cellpadding="8" width="90%" | 
|  | + | | <math>\operatorname{Con} (L) ~=~ L_{SI} ~=~ \{ (s, i) \in S \times I ~:~ (o, s, i) \in L ~\text{for some}~ o \in O \}.</math> | 
|  | + | |} | 
|  |  |  |  | 
| − | Con(R)  =  RSI  =  {<s, i> C SxI : <o, s, i> C R forsome o C O}.
 | + | Equivalent expressions for this concept are recorded in Definition 8. | 
|  |  |  |  | 
| − | Equivalent expressions for this concept are recorded in Definition 8.
 | + | <br> | 
|  |  |  |  | 
|  | + | <pre> | 
|  | Definition 8 |  | Definition 8 | 
|  |  |  |  | 
| Line 1,611: | Line 1,615: | 
|  |  |  |  | 
|  | D8e.	{<s, i> C SxI : <o, s, i> C R for some o C O} |  | D8e.	{<s, i> C SxI : <o, s, i> C R for some o C O} | 
|  | + | </pre> | 
|  |  |  |  | 
|  | + | <br> | 
|  | + |  | 
|  | + | <pre> | 
|  | The dyadic relation RIS that constitutes the converse of the connotative relation RSI can be defined directly in the following fashion: |  | The dyadic relation RIS that constitutes the converse of the connotative relation RSI can be defined directly in the following fashion: | 
|  |  |  |  |