Line 1,589:
Line 1,589:
In the following definitions, let <math>L \subseteq O \times S \times I,</math> let <math>S = I,\!</math> and let <math>x, y \in S.\!</math>
In the following definitions, let <math>L \subseteq O \times S \times I,</math> let <math>S = I,\!</math> and let <math>x, y \in S.\!</math>
−
<pre>
+
Recall the definition of <math>\operatorname{Con} (L),</math> the connotative component of a sign relation <math>L,\!</math> in the following form:
−
Recall the definition of Con(R), the connotative component of R, in the following form:
+
+
{| align="center" cellpadding="8" width="90%"
+
| <math>\operatorname{Con} (L) ~=~ L_{SI} ~=~ \{ (s, i) \in S \times I ~:~ (o, s, i) \in L ~\text{for some}~ o \in O \}.</math>
+
|}
−
Con(R) = RSI = {<s, i> C SxI : <o, s, i> C R for some o C O}.
+
Equivalent expressions for this concept are recorded in Definition 8.
−
Equivalent expressions for this concept are recorded in Definition 8.
+
<br>
+
<pre>
Definition 8
Definition 8
Line 1,611:
Line 1,615:
D8e. {<s, i> C SxI : <o, s, i> C R for some o C O}
D8e. {<s, i> C SxI : <o, s, i> C R for some o C O}
+
</pre>
+
<br>
+
+
<pre>
The dyadic relation RIS that constitutes the converse of the connotative relation RSI can be defined directly in the following fashion:
The dyadic relation RIS that constitutes the converse of the connotative relation RSI can be defined directly in the following fashion: