Changes

MyWikiBiz, Author Your Legacy — Monday January 06, 2025
Jump to navigationJump to search
Line 676: Line 676:  
<br>
 
<br>
   −
<pre>
+
{| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%"
Definition 5
+
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:40px; text-align:center"
 +
| width="80%" | &nbsp;
 +
| width="20%" | <math>\operatorname{Definition~5}</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:40px"
 +
| width="2%"  style="border-top:1px solid black" | &nbsp;
 +
| width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math>
 +
| width="80%" style="border-top:1px solid black" | <math>Q ~\subseteq~ X</math>
 +
|- style="height:40px"
 +
| &nbsp;
 +
| <math>\text{then}\!</math>
 +
| <math>\text{the following are identical propositions} ~:~ X \to \underline\mathbb{B}</math>
 +
|}
 +
|-
 +
|
 +
{| align="center" cellpadding="0" cellspacing="0" width="100%"
 +
|- style="height:40px"
 +
| width="2%"  style="border-top:1px solid black" | &nbsp;
 +
| width="18%" style="border-top:1px solid black" | <math>\operatorname{D5a.}</math>
 +
| width="80%" style="border-top:1px solid black" | <math>\upharpoonleft Q \upharpoonright</math>
 +
|- style="height:40px"
 +
| &nbsp;
 +
| <math>\operatorname{D5b.}</math>
 +
| <math>\downharpoonleft x \in Q \downharpoonright</math>
 +
|}
 +
|}
   −
If X c U,
+
<br>
 
  −
then the following are identical propositions:
  −
 
  −
D5a. {X}.
  −
 
  −
D5b. f : U -> B
  −
 
  −
: f(u) = [u C X], for all u C U.
  −
</pre>
      
Given an indexed set of sentences, <math>s_j\!</math> for <math>j \in J,</math> it is possible to consider the logical conjunction of the corresponding propositions.  Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition&nbsp;6.
 
Given an indexed set of sentences, <math>s_j\!</math> for <math>j \in J,</math> it is possible to consider the logical conjunction of the corresponding propositions.  Various notations for this concept are be useful in various contexts, a sufficient sample of which are recorded in Definition&nbsp;6.
12,080

edits

Navigation menu