Line 2,903: |
Line 2,903: |
| | | |
| ===Rule 10=== | | ===Rule 10=== |
− |
| |
− | <pre>
| |
− | Rule 10
| |
− |
| |
− | If X, Y c U,
| |
− |
| |
− | then the following are equivalent:
| |
− |
| |
− | R10a. X = Y. :D2a
| |
− | ::
| |
− | R10b. u C X <=> u C Y, for all u C U. :D2b
| |
− | :R8a
| |
− | ::
| |
− | R10c. [u C X] = [u C Y]. :R8b
| |
− | ::
| |
− | R10d. For all u C U,
| |
− | [u C X](u) = [u C Y](u). :R8c
| |
− | ::
| |
− | R10e. ConjUu ( [u C X](u) = [u C Y](u) ). :R8d
| |
− | ::
| |
− | R10f. ConjUu ( [u C X](u) <=> [u C Y](u) ). :R8e
| |
− | ::
| |
− | R10g. ConjUu (( [u C X](u) , [u C Y](u) )). :R8f
| |
− | ::
| |
− | R10h. ConjUu (( [u C X] , [u C Y] ))$(u). :R8g
| |
− | </pre>
| |
| | | |
| <br> | | <br> |
Line 2,960: |
Line 2,934: |
| | width="18%" style="border-top:1px solid black" | <math>\operatorname{R10a.}</math> | | | width="18%" style="border-top:1px solid black" | <math>\operatorname{R10a.}</math> |
| | width="60%" style="border-top:1px solid black" | <math>P ~=~ Q</math> | | | width="60%" style="border-top:1px solid black" | <math>P ~=~ Q</math> |
− | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R10a~:~R5a}</math> | + | | width="20%" style="border-top:1px solid black; border-left:1px solid black; text-align:center" | <math>\operatorname{R10a~:~D2a}</math> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 2,969: |
Line 2,943: |
| | | | | |
| | <math>\operatorname{R10b.}</math> | | | <math>\operatorname{R10b.}</math> |
− | | <math>\upharpoonleft P \upharpoonright ~=~ \upharpoonleft Q \upharpoonright</math> | + | | <math>\overset{X}{\underset{x}{\forall}}~ (x \in P ~\Leftrightarrow~ x \in Q)</math> |
| | style="border-left:1px solid black; text-align:center" | | | | style="border-left:1px solid black; text-align:center" | |
− | <p><math>\operatorname{R10b~:~R5e}</math></p> | + | <p><math>\operatorname{R10b~:~D2b}</math></p> |
− | <p><math>\operatorname{R10b~:~R7a}</math></p> | + | <p><math>\operatorname{R10b~:~R8a}</math></p> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 2,978: |
Line 2,952: |
| | | | | |
| | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
− | |- style="height:60px" | + | |- style="height:40px" |
| | | | | |
| | <math>\operatorname{R10c.}</math> | | | <math>\operatorname{R10c.}</math> |
− | | <math>\overset{X}{\underset{x}{\forall}}~ (\upharpoonleft P \upharpoonright (x) ~=~ \upharpoonleft Q \upharpoonright (x))</math> | + | | <math>\downharpoonleft x \in P \downharpoonright ~=~ \downharpoonleft x \in Q \downharpoonright</math> |
− | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10c~:~R7b}</math> | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10c~:~R8b}</math> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 2,991: |
Line 2,965: |
| | | | | |
| | <math>\operatorname{R10d.}</math> | | | <math>\operatorname{R10d.}</math> |
− | | <math>\operatorname{Conj_x^X}~ (\upharpoonleft P \upharpoonright (x) ~=~ \upharpoonleft Q \upharpoonright (x))</math> | + | | <math>\overset{X}{\underset{x}{\forall}}~ \downharpoonleft x \in P \downharpoonright (x) ~=~ \downharpoonleft x \in Q \downharpoonright (x)</math> |
− | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10d~:~R7c}</math> | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10d~:~R8c}</math> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 3,001: |
Line 2,975: |
| | | | | |
| | <math>\operatorname{R10e.}</math> | | | <math>\operatorname{R10e.}</math> |
− | | <math>\operatorname{Conj_x^X}~ (\upharpoonleft P \upharpoonright (x) ~\Leftrightarrow~ \upharpoonleft Q \upharpoonright (x))</math> | + | | <math>\operatorname{Conj_x^X}~ (\downharpoonleft x \in P \downharpoonright (x) ~=~ \downharpoonleft x \in Q \downharpoonright (x))</math> |
− | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10e~:~R7d}</math> | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10e~:~R8d}</math> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 3,008: |
Line 2,982: |
| | | | | |
| | style="border-left:1px solid black; text-align:center" | <math>::\!</math> | | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
− | |- style="height:60px" | + | |- style="height:40px" |
| | | | | |
| | <math>\operatorname{R10f.}</math> | | | <math>\operatorname{R10f.}</math> |
− | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \upharpoonleft P \upharpoonright (x) ~,~ \upharpoonleft Q \upharpoonright (x) ~\underline{))}</math> | + | | <math>\operatorname{Conj_x^X}~ (\downharpoonleft x \in P \downharpoonright (x) ~\Leftrightarrow~ \downharpoonleft x \in Q \downharpoonright (x))</math> |
− | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10f~:~R7e}</math> | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10f~:~R8e}</math> |
| |- style="height:20px" | | |- style="height:20px" |
| | | | | |
Line 3,021: |
Line 2,995: |
| | | | | |
| | <math>\operatorname{R10g.}</math> | | | <math>\operatorname{R10g.}</math> |
− | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright ~\underline{))}^\$ (x)</math> | + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \downharpoonleft x \in P \downharpoonright (x) ~,~ \downharpoonleft x \in Q \downharpoonright (x) ~\underline{))}</math> |
− | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10g~:~R7f}</math> | + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10g~:~R8f}</math> |
| + | |- style="height:20px" |
| + | | |
| + | | |
| + | | |
| + | | style="border-left:1px solid black; text-align:center" | <math>::\!</math> |
| + | |- style="height:40px" |
| + | | |
| + | | <math>\operatorname{R10h.}</math> |
| + | | <math>\operatorname{Conj_x^X}~ \underline{((}~ \downharpoonleft x \in P \downharpoonright ~,~ \downharpoonleft x \in Q \downharpoonright ~\underline{))}^\$ (x)</math> |
| + | | style="border-left:1px solid black; text-align:center" | <math>\operatorname{R10h~:~R8g}</math> |
| |} | | |} |
| |} | | |} |