Line 1,649: |
Line 1,649: |
| ====Variant 3==== | | ====Variant 3==== |
| | | |
− | <pre>
| |
| A rule that allows one to turn equivalent sentences into identical propositions: | | A rule that allows one to turn equivalent sentences into identical propositions: |
| | | |
− | (S <=> T) <=> ([S] = [T])
| + | {| align="center" cellpadding="8" width="90%" |
| + | | <math>(s ~\Leftrightarrow~ t) \quad \Leftrightarrow \quad (\downharpoonleft s \downharpoonright ~=~ \downharpoonleft t \downharpoonright)</math> |
| + | |} |
| | | |
− | Consider [ v = w ](v, w) and [ v(u) = w(u) ](u) | + | Consider the following pair of expressions: |
| | | |
− | Value Rule 1
| + | {| align="center" cellpadding="8" width="90%" |
| + | | <math>\downharpoonleft v ~=~ w \downharpoonright (v, w)</math> |
| + | |- |
| + | | <math>\downharpoonleft v(x) ~=~ w(x) \downharpoonright (x)</math> |
| + | |} |
| | | |
− | If v, w C B,
| + | <br> |
| | | |
− | then the following are identical values in B: | + | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:48px; text-align:right" |
| + | | width="98%" | <math>\text{Value Rule 1}\!</math> |
| + | | width="2%" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:48px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> |
| + | | width="84%" style="border-top:1px solid black" | <math>v, w ~\in~ \underline\mathbb{B}</math> |
| + | |- style="height:48px" |
| + | | |
| + | | <math>\text{then}\!</math> |
| + | | <math>\text{the following are identical values in}~ \underline\mathbb{B}:</math> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="0" cellspacing="0" width="100%" |
| + | |- style="height:56px" |
| + | | width="2%" style="border-top:1px solid black" | |
| + | | width="14%" style="border-top:1px solid black" | <math>\text{V1a.}\!</math> |
| + | | width="84%" style="border-top:1px solid black" | <math>\downharpoonleft v = w \downharpoonright</math> |
| + | |- style="height:56px" |
| + | | |
| + | | <math>\text{V1b.}\!</math> |
| + | | <math>\downharpoonleft v \Leftrightarrow w \downharpoonright</math> |
| + | |- style="height:56px" |
| + | | |
| + | | <math>\text{V1c.}\!</math> |
| + | | <math>\underline{((}~ v ~,~ w ~\underline{))}</math> |
| + | |} |
| + | |} |
| | | |
− | V1a. [ v = w ]
| + | <br> |
− | | |
− | V1b. [ v <=> w ]
| |
− | | |
− | V1c. (( v , w ))
| |
− | </pre>
| |
| | | |
| ====Variant 4==== | | ====Variant 4==== |