Line 5,688: |
Line 5,688: |
| The same connection <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B}</math> can also be read as a proposition about things in the universe <math>X = \underline\mathbb{B}^2.</math> If <math>s\!</math> is a sentence that denotes the proposition <math>F,\!</math> then the corresponding assertion says exactly what one states in uttering the sentence <math>^{\backprime\backprime} \, x ~\operatorname{is~not~equal~to}~ y \, ^{\prime\prime}.</math> In such a case, one has <math>\downharpoonleft s \downharpoonright \, = F,</math> and all of the following expressions are ordinarily taken as equivalent descriptions of the same set: | | The same connection <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B}</math> can also be read as a proposition about things in the universe <math>X = \underline\mathbb{B}^2.</math> If <math>s\!</math> is a sentence that denotes the proposition <math>F,\!</math> then the corresponding assertion says exactly what one states in uttering the sentence <math>^{\backprime\backprime} \, x ~\operatorname{is~not~equal~to}~ y \, ^{\prime\prime}.</math> In such a case, one has <math>\downharpoonleft s \downharpoonright \, = F,</math> and all of the following expressions are ordinarily taken as equivalent descriptions of the same set: |
| | | |
− | {| align="center" cellpadding="4" style="text-align:left" width="90%" | + | {| align="center" cellpadding="8" width="90%" |
− | | | + | | |
− | |-
| + | <math>\begin{array}{lll} |
− | | <math>[| \downharpoonleft s \downharpoonright |]</math>
| + | [| \downharpoonleft s \downharpoonright |] |
− | | <math>=\!</math>
| + | & = & [| F |] |
− | | <math>[| F |]\!</math>
| + | \\[6pt] |
− | |-
| + | & = & F^{-1} (\underline{1}) |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\} |
− | | <math>F^{-1} (\underline{1})</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\} |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\} |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\} |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\} |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}. |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\}</math>
| + | \end{array}</math> |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}.</math>
| |
− | |-
| |
− | |
| |
| |} | | |} |
| | | |
Line 5,819: |
Line 5,793: |
| For each choice of propositions <math>p\!</math> and <math>q\!</math> about things in <math>X,\!</math> the stretch of <math>F\!</math> to <math>p\!</math> and <math>q\!</math> on <math>X\!</math> is just another proposition about things in <math>X,\!</math> a simple proposition in its own right, no matter how complex its current expression or its present construction as <math>F^\$ (p, q) = \underline{(}~p~,~q~\underline{)}^\$</math> makes it appear in relation to <math>p\!</math> and <math>q.\!</math> Like any other proposition about things in <math>X,\!</math> it indicates a subset of <math>X,\!</math> namely, the fiber that is variously described in the following ways: | | For each choice of propositions <math>p\!</math> and <math>q\!</math> about things in <math>X,\!</math> the stretch of <math>F\!</math> to <math>p\!</math> and <math>q\!</math> on <math>X\!</math> is just another proposition about things in <math>X,\!</math> a simple proposition in its own right, no matter how complex its current expression or its present construction as <math>F^\$ (p, q) = \underline{(}~p~,~q~\underline{)}^\$</math> makes it appear in relation to <math>p\!</math> and <math>q.\!</math> Like any other proposition about things in <math>X,\!</math> it indicates a subset of <math>X,\!</math> namely, the fiber that is variously described in the following ways: |
| | | |
− | {| align="center" cellpadding="4" style="text-align:left" width="90%" | + | {| align="center" cellpadding="8" width="90%" |
− | | | + | | |
− | |-
| + | <math>\begin{array}{lll} |
− | | <math>[| F^\$ (p, q) |]</math>
| + | [| F^\$ (p, q) |] |
− | | <math>=\!</math>
| + | & = & [| \underline{(}~p~,~q~\underline{)}^\$ |] |
− | | <math>[| \underline{(}~p~,~q~\underline{)}^\$ |]</math>
| + | \\[6pt] |
− | |-
| + | & = & (F^\$ (p, q))^{-1} (\underline{1}) |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\} |
− | | <math>(F^\$ (p, q))^{-1} (\underline{1})</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\} |
− | | <math>\{~ x \in X ~:~ F^\$ (p, q)(x) ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ x \in X ~:~ p(x) + q(x) ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ x \in X ~:~ p(x) \neq q(x) ~\} |
− | | <math>\{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\} |
− | | <math>\{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\operatorname{or}~ x \in Q\!-\!P ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\} |
− | | <math>\{~ x \in X ~:~ p(x) + q(x) ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & \{~ x \in X ~:~ x \in P + Q ~\} |
− | |
| + | \\[6pt] |
− | | <math>=\!</math>
| + | & = & P + Q ~\subseteq~ X |
− | | <math>\{~ x \in X ~:~ p(x) \neq q(x) ~\}</math>
| + | \\[6pt] |
− | |-
| + | & = & [|p|] + [|q|] ~\subseteq~ X |
− | |
| + | \end{array}</math> |
− | | <math>=\!</math>
| |
− | | <math>\{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\operatorname{or}~ x \in Q\!-\!P ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>\{~ x \in X ~:~ x \in P + Q ~\}</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>P + Q ~\subseteq~ X</math>
| |
− | |-
| |
− | |
| |
− | | <math>=\!</math>
| |
− | | <math>[|p|] + [|q|] ~\subseteq~ X</math>
| |
− | |-
| |
− | |
| |
| |} | | |} |
| | | |