Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
→‎1.3.11.6. Stretching Exercises: reformat equation sequences
Line 5,688: Line 5,688:  
The same connection <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B}</math> can also be read as a proposition about things in the universe <math>X = \underline\mathbb{B}^2.</math>  If <math>s\!</math> is a sentence that denotes the proposition <math>F,\!</math> then the corresponding assertion says exactly what one states in uttering the sentence <math>^{\backprime\backprime} \, x ~\operatorname{is~not~equal~to}~ y \, ^{\prime\prime}.</math>  In such a case, one has <math>\downharpoonleft s \downharpoonright \, = F,</math> and all of the following expressions are ordinarily taken as equivalent descriptions of the same set:
 
The same connection <math>F : \underline\mathbb{B}^2 \to \underline\mathbb{B}</math> can also be read as a proposition about things in the universe <math>X = \underline\mathbb{B}^2.</math>  If <math>s\!</math> is a sentence that denotes the proposition <math>F,\!</math> then the corresponding assertion says exactly what one states in uttering the sentence <math>^{\backprime\backprime} \, x ~\operatorname{is~not~equal~to}~ y \, ^{\prime\prime}.</math>  In such a case, one has <math>\downharpoonleft s \downharpoonright \, = F,</math> and all of the following expressions are ordinarily taken as equivalent descriptions of the same set:
   −
{| align="center" cellpadding="4" style="text-align:left" width="90%"
+
{| align="center" cellpadding="8" width="90%"
| &nbsp;
+
|
|-
+
<math>\begin{array}{lll}
| <math>[| \downharpoonleft s \downharpoonright |]</math>
+
[| \downharpoonleft s \downharpoonright |]
| <math>=\!</math>
+
& = & [| F |]
| <math>[| F |]\!</math>
+
\\[6pt]
|-
+
& = & F^{-1} (\underline{1})
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\}
| <math>F^{-1} (\underline{1})</math>
+
\\[6pt]
|-
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\}
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ s ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\}
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) = \underline{1} ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\}
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ F(x, y) ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} = \underline{1} ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}.
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \underline{(}~x~,~y~\underline{)} ~\}</math>
+
\end{array}</math>
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{exclusive~or}~ y ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ \operatorname{just~one~true~of}~ x, y ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x ~\operatorname{not~equal~to}~ y ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x \neq y ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ (x, y) \in \underline\mathbb{B}^2 ~:~ x + y ~\}.</math>
  −
|-
  −
| &nbsp;
   
|}
 
|}
   Line 5,819: Line 5,793:  
For each choice of propositions <math>p\!</math> and <math>q\!</math> about things in <math>X,\!</math> the stretch of <math>F\!</math> to <math>p\!</math> and <math>q\!</math> on <math>X\!</math> is just another proposition about things in <math>X,\!</math> a simple proposition in its own right, no matter how complex its current expression or its present construction as <math>F^\$ (p, q) = \underline{(}~p~,~q~\underline{)}^\$</math> makes it appear in relation to <math>p\!</math> and <math>q.\!</math>  Like any other proposition about things in <math>X,\!</math> it indicates a subset of <math>X,\!</math> namely, the fiber that is variously described in the following ways:
 
For each choice of propositions <math>p\!</math> and <math>q\!</math> about things in <math>X,\!</math> the stretch of <math>F\!</math> to <math>p\!</math> and <math>q\!</math> on <math>X\!</math> is just another proposition about things in <math>X,\!</math> a simple proposition in its own right, no matter how complex its current expression or its present construction as <math>F^\$ (p, q) = \underline{(}~p~,~q~\underline{)}^\$</math> makes it appear in relation to <math>p\!</math> and <math>q.\!</math>  Like any other proposition about things in <math>X,\!</math> it indicates a subset of <math>X,\!</math> namely, the fiber that is variously described in the following ways:
   −
{| align="center" cellpadding="4" style="text-align:left" width="90%"
+
{| align="center" cellpadding="8" width="90%"
| &nbsp;
+
|
|-
+
<math>\begin{array}{lll}
| <math>[| F^\$ (p, q) |]</math>
+
[| F^\$ (p, q) |]
| <math>=\!</math>
+
& = & [| \underline{(}~p~,~q~\underline{)}^\$ |]
| <math>[| \underline{(}~p~,~q~\underline{)}^\$ |]</math>
+
\\[6pt]
|-
+
& = & (F^\$ (p, q))^{-1} (\underline{1})
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\}
| <math>(F^\$ (p, q))^{-1} (\underline{1})</math>
+
\\[6pt]
|-
+
& = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}
| <math>\{~ x \in X ~:~ F^\$ (p, q)(x) ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ x \in X ~:~ p(x) + q(x) ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ x \in X ~:~ p(x) \neq q(x) ~\}
| <math>\{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}
| <math>\{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ x \in X ~:~ x \in P\!-\!Q ~\operatorname{or}~ x \in Q\!-\!P ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}
| <math>\{~ x \in X ~:~ p(x) + q(x) ~\}</math>
+
\\[6pt]
|-
+
& = & \{~ x \in X ~:~ x \in P + Q ~\}
| &nbsp;
+
\\[6pt]
| <math>=\!</math>
+
& = & P + Q ~\subseteq~ X
| <math>\{~ x \in X ~:~ p(x) \neq q(x) ~\}</math>
+
\\[6pt]
|-
+
& = & [|p|] + [|q|] ~\subseteq~ X
| &nbsp;
+
\end{array}</math>
| <math>=\!</math>
  −
| <math>\{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\operatorname{or}~ x \in Q\!-\!P ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>\{~ x \in X ~:~ x \in P + Q ~\}</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>P + Q ~\subseteq~ X</math>
  −
|-
  −
| &nbsp;
  −
| <math>=\!</math>
  −
| <math>[|p|] + [|q|] ~\subseteq~ X</math>
  −
|-
  −
| &nbsp;
   
|}
 
|}
  
12,080

edits

Navigation menu